Machine Learning and Physics: A Survey of Integrated Models

可解释性 机器学习 人工智能 计算机科学 领域(数学) 物理系统 透明度(行为) 数据科学 物理 数学 计算机安全 量子力学 纯数学
作者
Azra Seyyedi,Mahdi Bohlouli,SeyedEhsan Nedaaee Oskoee
出处
期刊:ACM Computing Surveys [Association for Computing Machinery]
卷期号:56 (5): 1-33 被引量:1
标识
DOI:10.1145/3611383
摘要

Predictive modeling of various systems around the world is extremely essential from the physics and engineering perspectives. The recognition of different systems and the capacity to predict their future behavior can lead to numerous significant applications. For the most part, physics is frequently used to model different systems. Using physical modeling can also very well help the resolution of complexity and achieve superior performance with the emerging field of novel artificial intelligence and the challenges associated with it. Physical modeling provides data and knowledge that offer a meaningful and complementary understanding about the system. So, by using enriched data and training phases, the overall general integrated model achieves enhanced accuracy. The effectiveness of hybrid physics-guided or machine learning-guided models has been validated by experimental results of diverse use cases. Increased accuracy, interpretability, and transparency are the results of such hybrid models. In this article, we provide a detailed overview of how machine learning and physics can be integrated into an interactive approach. Regarding this, we propose a classification of possible interactions between physical modeling and machine learning techniques. Our classification includes three types of approaches: (1) physics-guided machine learning (2) machine learning-guided physics, and (3) mutually-guided physics and ML. We studied the models and specifications for each of these three approaches in-depth for this survey.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
棕榈发布了新的文献求助10
1秒前
1秒前
万能图书馆应助高高雪枫采纳,获得30
2秒前
2秒前
TAN完成签到 ,获得积分10
2秒前
oldblack完成签到,获得积分10
2秒前
3秒前
淡淡乐巧完成签到 ,获得积分10
3秒前
3秒前
Owen应助李火旺采纳,获得10
3秒前
4秒前
含蓄安筠发布了新的文献求助10
4秒前
5秒前
5秒前
小泰勒横着走完成签到,获得积分10
5秒前
Y_发布了新的文献求助10
6秒前
ruochenzu发布了新的文献求助10
6秒前
陆柒八发布了新的文献求助10
7秒前
田様应助mingkle采纳,获得10
7秒前
纪震宇完成签到,获得积分10
7秒前
8秒前
10秒前
Liu889888发布了新的文献求助10
10秒前
10秒前
Hello应助兴龙采纳,获得10
10秒前
东东完成签到,获得积分20
10秒前
11秒前
Owen应助不语采纳,获得30
11秒前
12秒前
12秒前
12秒前
快乐滑板应助执着的听安采纳,获得10
13秒前
Lucas应助俭朴的世界采纳,获得10
13秒前
Lilili发布了新的文献求助10
13秒前
细腻问柳完成签到,获得积分10
13秒前
Hoshino完成签到,获得积分10
14秒前
14秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148527
求助须知:如何正确求助?哪些是违规求助? 2799622
关于积分的说明 7836197
捐赠科研通 2457012
什么是DOI,文献DOI怎么找? 1307684
科研通“疑难数据库(出版商)”最低求助积分说明 628247
版权声明 601655