Machine Learning and Physics: A Survey of Integrated Models

可解释性 机器学习 人工智能 计算机科学 领域(数学) 物理系统 透明度(行为) 数据科学 物理 数学 计算机安全 量子力学 纯数学
作者
Azra Seyyedi,Mahdi Bohlouli,SeyedEhsan Nedaaee Oskoee
出处
期刊:ACM Computing Surveys [Association for Computing Machinery]
卷期号:56 (5): 1-33 被引量:9
标识
DOI:10.1145/3611383
摘要

Predictive modeling of various systems around the world is extremely essential from the physics and engineering perspectives. The recognition of different systems and the capacity to predict their future behavior can lead to numerous significant applications. For the most part, physics is frequently used to model different systems. Using physical modeling can also very well help the resolution of complexity and achieve superior performance with the emerging field of novel artificial intelligence and the challenges associated with it. Physical modeling provides data and knowledge that offer a meaningful and complementary understanding about the system. So, by using enriched data and training phases, the overall general integrated model achieves enhanced accuracy. The effectiveness of hybrid physics-guided or machine learning-guided models has been validated by experimental results of diverse use cases. Increased accuracy, interpretability, and transparency are the results of such hybrid models. In this article, we provide a detailed overview of how machine learning and physics can be integrated into an interactive approach. Regarding this, we propose a classification of possible interactions between physical modeling and machine learning techniques. Our classification includes three types of approaches: (1) physics-guided machine learning (2) machine learning-guided physics, and (3) mutually-guided physics and ML. We studied the models and specifications for each of these three approaches in-depth for this survey.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王加通完成签到,获得积分10
刚刚
1秒前
精明的甜瓜应助神羊采纳,获得20
1秒前
asd发布了新的文献求助10
1秒前
ghy完成签到 ,获得积分10
2秒前
火星上芹菜完成签到,获得积分10
3秒前
Yiya发布了新的文献求助10
4秒前
毛通完成签到,获得积分10
4秒前
Zhanghh87应助翎尧采纳,获得10
4秒前
启程完成签到,获得积分10
5秒前
yyj完成签到,获得积分10
5秒前
kydd完成签到,获得积分10
5秒前
lun完成签到,获得积分10
5秒前
5秒前
齐天大圣应助风清扬采纳,获得50
5秒前
完美世界应助r93527005采纳,获得10
6秒前
乐乐应助xh采纳,获得10
6秒前
tyh完成签到,获得积分10
7秒前
梁晓玲发布了新的文献求助10
7秒前
8秒前
春鸮鸟完成签到 ,获得积分10
8秒前
月下荷花完成签到,获得积分10
8秒前
喵小薇完成签到 ,获得积分10
9秒前
潇湘夜雨完成签到,获得积分10
9秒前
小不遛w完成签到,获得积分10
9秒前
9秒前
人不犯二枉少年完成签到,获得积分10
9秒前
谭刚发布了新的文献求助10
10秒前
10秒前
刘大恒发布了新的文献求助10
10秒前
Owen应助wfafggga采纳,获得10
11秒前
11秒前
11秒前
钱多多完成签到,获得积分10
11秒前
12秒前
孝顺的尔丝完成签到,获得积分10
12秒前
12秒前
Mike14完成签到,获得积分10
13秒前
xh完成签到,获得积分10
13秒前
13秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016130
求助须知:如何正确求助?哪些是违规求助? 3556145
关于积分的说明 11320169
捐赠科研通 3289087
什么是DOI,文献DOI怎么找? 1812382
邀请新用户注册赠送积分活动 887923
科研通“疑难数据库(出版商)”最低求助积分说明 812051