Machine Learning and Physics: A Survey of Integrated Models

可解释性 机器学习 人工智能 计算机科学 领域(数学) 物理系统 透明度(行为) 数据科学 物理 数学 计算机安全 量子力学 纯数学
作者
Azra Seyyedi,Mahdi Bohlouli,SeyedEhsan Nedaaee Oskoee
出处
期刊:ACM Computing Surveys [Association for Computing Machinery]
卷期号:56 (5): 1-33 被引量:9
标识
DOI:10.1145/3611383
摘要

Predictive modeling of various systems around the world is extremely essential from the physics and engineering perspectives. The recognition of different systems and the capacity to predict their future behavior can lead to numerous significant applications. For the most part, physics is frequently used to model different systems. Using physical modeling can also very well help the resolution of complexity and achieve superior performance with the emerging field of novel artificial intelligence and the challenges associated with it. Physical modeling provides data and knowledge that offer a meaningful and complementary understanding about the system. So, by using enriched data and training phases, the overall general integrated model achieves enhanced accuracy. The effectiveness of hybrid physics-guided or machine learning-guided models has been validated by experimental results of diverse use cases. Increased accuracy, interpretability, and transparency are the results of such hybrid models. In this article, we provide a detailed overview of how machine learning and physics can be integrated into an interactive approach. Regarding this, we propose a classification of possible interactions between physical modeling and machine learning techniques. Our classification includes three types of approaches: (1) physics-guided machine learning (2) machine learning-guided physics, and (3) mutually-guided physics and ML. We studied the models and specifications for each of these three approaches in-depth for this survey.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
月亮完成签到,获得积分10
1秒前
auguster发布了新的文献求助220
2秒前
3秒前
Lucas应助小正采纳,获得10
3秒前
kiguf完成签到,获得积分10
3秒前
4秒前
flac完成签到,获得积分10
5秒前
JamesPei应助火星上的大开采纳,获得10
5秒前
pluto应助吧啦吧啦采纳,获得10
5秒前
西因应助ky采纳,获得10
7秒前
加油发布了新的文献求助10
8秒前
8秒前
搜集达人应助唠叨的板栗采纳,获得10
9秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
大模型应助pepsisery采纳,获得10
10秒前
传奇3应助热情剑采纳,获得10
11秒前
张雅露完成签到,获得积分10
11秒前
Piana完成签到 ,获得积分10
11秒前
偷懒会被吃掉的完成签到,获得积分10
13秒前
¥#¥-11完成签到,获得积分10
14秒前
Ethan完成签到,获得积分10
15秒前
zedhumble完成签到,获得积分10
15秒前
spzdss完成签到,获得积分10
15秒前
炸炸呦发布了新的文献求助10
16秒前
NexusExplorer应助科研通管家采纳,获得10
16秒前
大模型应助科研通管家采纳,获得10
16秒前
彭于晏应助科研通管家采纳,获得10
16秒前
SciGPT应助科研通管家采纳,获得10
16秒前
一个西藏发布了新的文献求助10
16秒前
汉堡包应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
后来应助科研通管家采纳,获得90
16秒前
蓝天应助科研通管家采纳,获得10
17秒前
FashionBoy应助科研通管家采纳,获得10
17秒前
上官若男应助科研通管家采纳,获得10
17秒前
彭于晏应助科研通管家采纳,获得30
17秒前
FashionBoy应助科研通管家采纳,获得10
17秒前
蓝天应助科研通管家采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5602503
求助须知:如何正确求助?哪些是违规求助? 4687624
关于积分的说明 14850243
捐赠科研通 4684300
什么是DOI,文献DOI怎么找? 2539931
邀请新用户注册赠送积分活动 1506645
关于科研通互助平台的介绍 1471428