亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine Learning and Physics: A Survey of Integrated Models

可解释性 机器学习 人工智能 计算机科学 领域(数学) 物理系统 透明度(行为) 数据科学 物理 数学 计算机安全 量子力学 纯数学
作者
Azra Seyyedi,Mahdi Bohlouli,SeyedEhsan Nedaaee Oskoee
出处
期刊:ACM Computing Surveys [Association for Computing Machinery]
卷期号:56 (5): 1-33 被引量:9
标识
DOI:10.1145/3611383
摘要

Predictive modeling of various systems around the world is extremely essential from the physics and engineering perspectives. The recognition of different systems and the capacity to predict their future behavior can lead to numerous significant applications. For the most part, physics is frequently used to model different systems. Using physical modeling can also very well help the resolution of complexity and achieve superior performance with the emerging field of novel artificial intelligence and the challenges associated with it. Physical modeling provides data and knowledge that offer a meaningful and complementary understanding about the system. So, by using enriched data and training phases, the overall general integrated model achieves enhanced accuracy. The effectiveness of hybrid physics-guided or machine learning-guided models has been validated by experimental results of diverse use cases. Increased accuracy, interpretability, and transparency are the results of such hybrid models. In this article, we provide a detailed overview of how machine learning and physics can be integrated into an interactive approach. Regarding this, we propose a classification of possible interactions between physical modeling and machine learning techniques. Our classification includes three types of approaches: (1) physics-guided machine learning (2) machine learning-guided physics, and (3) mutually-guided physics and ML. We studied the models and specifications for each of these three approaches in-depth for this survey.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助maplesirup采纳,获得10
6秒前
鹿呦完成签到 ,获得积分10
35秒前
51秒前
ceeray23发布了新的文献求助20
56秒前
JRALL完成签到 ,获得积分10
1分钟前
悠树里完成签到,获得积分10
1分钟前
shhoing应助科研通管家采纳,获得10
1分钟前
1分钟前
科研通AI2S应助Li采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
小强呐完成签到 ,获得积分10
2分钟前
啥时候吃火锅完成签到 ,获得积分0
2分钟前
天天快乐应助guan采纳,获得10
2分钟前
科研通AI2S应助Li采纳,获得10
2分钟前
呆萌念云完成签到 ,获得积分10
2分钟前
小乐完成签到 ,获得积分10
3分钟前
minnie完成签到 ,获得积分10
3分钟前
3分钟前
renjijiefuli应助叶子采纳,获得20
3分钟前
科研通AI2S应助Li采纳,获得10
3分钟前
3分钟前
shhoing应助科研通管家采纳,获得10
3分钟前
ceeray23发布了新的文献求助20
3分钟前
微风打了烊完成签到 ,获得积分10
3分钟前
威武灵阳完成签到,获得积分10
3分钟前
科研通AI6应助Li采纳,获得10
3分钟前
4分钟前
绝活中投完成签到 ,获得积分10
4分钟前
Kinkrit完成签到 ,获得积分10
4分钟前
kaka完成签到 ,获得积分10
5分钟前
huenguyenvan完成签到,获得积分10
5分钟前
shhoing应助科研通管家采纳,获得10
5分钟前
gexzygg应助科研通管家采纳,获得10
5分钟前
Perry完成签到,获得积分0
5分钟前
深情安青应助ceeray23采纳,获得20
5分钟前
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5558483
求助须知:如何正确求助?哪些是违规求助? 4643554
关于积分的说明 14671177
捐赠科研通 4584850
什么是DOI,文献DOI怎么找? 2515191
邀请新用户注册赠送积分活动 1489272
关于科研通互助平台的介绍 1459883