Machine Learning and Physics: A Survey of Integrated Models

可解释性 机器学习 人工智能 计算机科学 领域(数学) 物理系统 透明度(行为) 数据科学 物理 数学 计算机安全 量子力学 纯数学
作者
Azra Seyyedi,Mahdi Bohlouli,SeyedEhsan Nedaaee Oskoee
出处
期刊:ACM Computing Surveys [Association for Computing Machinery]
卷期号:56 (5): 1-33 被引量:9
标识
DOI:10.1145/3611383
摘要

Predictive modeling of various systems around the world is extremely essential from the physics and engineering perspectives. The recognition of different systems and the capacity to predict their future behavior can lead to numerous significant applications. For the most part, physics is frequently used to model different systems. Using physical modeling can also very well help the resolution of complexity and achieve superior performance with the emerging field of novel artificial intelligence and the challenges associated with it. Physical modeling provides data and knowledge that offer a meaningful and complementary understanding about the system. So, by using enriched data and training phases, the overall general integrated model achieves enhanced accuracy. The effectiveness of hybrid physics-guided or machine learning-guided models has been validated by experimental results of diverse use cases. Increased accuracy, interpretability, and transparency are the results of such hybrid models. In this article, we provide a detailed overview of how machine learning and physics can be integrated into an interactive approach. Regarding this, we propose a classification of possible interactions between physical modeling and machine learning techniques. Our classification includes three types of approaches: (1) physics-guided machine learning (2) machine learning-guided physics, and (3) mutually-guided physics and ML. We studied the models and specifications for each of these three approaches in-depth for this survey.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助鱼鱼采纳,获得10
刚刚
明亮元菱完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
斯人完成签到 ,获得积分10
2秒前
2秒前
3秒前
3秒前
小包发布了新的文献求助30
4秒前
阿皮皮皮发布了新的文献求助10
4秒前
freshman3005完成签到,获得积分10
4秒前
panpan发布了新的文献求助10
5秒前
meetland完成签到,获得积分10
5秒前
jiwn完成签到,获得积分10
5秒前
xiaowang完成签到,获得积分10
5秒前
lsy发布了新的文献求助10
6秒前
CipherSage应助shunli顺利采纳,获得10
6秒前
最好发布了新的文献求助10
6秒前
yi111发布了新的文献求助10
6秒前
6秒前
七七发布了新的文献求助10
7秒前
傲娇的凡完成签到,获得积分10
7秒前
Belief完成签到,获得积分10
8秒前
搜集达人应助oreo采纳,获得10
8秒前
8秒前
长颈鹿完成签到,获得积分10
9秒前
9秒前
慕青应助苏筱采纳,获得10
10秒前
Gates发布了新的文献求助10
10秒前
Orange应助忧伤的皮皮虾采纳,获得10
10秒前
泅渡完成签到,获得积分10
11秒前
学术黄金完成签到,获得积分10
11秒前
HUBU完成签到,获得积分10
11秒前
无极微光应助snow采纳,获得20
12秒前
12秒前
蛙蛙发布了新的文献求助10
13秒前
一只特立独行的朱完成签到,获得积分10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5727674
求助须知:如何正确求助?哪些是违规求助? 5309608
关于积分的说明 15311894
捐赠科研通 4875130
什么是DOI,文献DOI怎么找? 2618553
邀请新用户注册赠送积分活动 1568241
关于科研通互助平台的介绍 1524919