清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Nonlinear ultrasonic concrete crack identification with deep learning based on time-frequency image

非线性系统 深度学习 人工智能 超声波传感器 时频分析 计算机科学 傅里叶变换 鉴定(生物学) 模式识别(心理学) 连续小波变换 小波变换 声学 小波 计算机视觉 数学 离散小波变换 数学分析 物理 生物 滤波器(信号处理) 量子力学 植物
作者
Jianfeng Liu,Kui Wang,Mingjie Zhao,Yongjiang Chen
出处
期刊:Nondestructive Testing and Evaluation [Informa]
卷期号:39 (5): 1225-1249 被引量:10
标识
DOI:10.1080/10589759.2023.2250513
摘要

ABSTRACTBy combining time-frequency images and deep learning models, the nonlinear ultrasound signals can be classified, detected, and predicted, using the nonlinear coefficient as a fundamental label for training deep learning models. This integrated approach enables quantitative identification and real-time monitoring of concrete damage, promoting the widespread adoption of nonlinear ultrasonic techniques in engineering applications. As a basis, the relationship between damage variations and nonlinear coefficients is discussed by performing nonlinear ultrasonic damage testing on concrete specimens with different crack lengths and angles. The testing signals are converted into time-frequency images using the short-time Fourier transform and the continuous wavelet transform, and both types of images are combined for data augmentation and input into the deep learning model for training, with nonlinear coefficients serving as labels for the time-frequency images. The MobileNetV2, VGG16, and ResNet18 deep learning models are trained separately on time-frequency image datasets for the length specimens, the angle specimens, and the length-angle specimens, and the performance of the different models is evaluated and compared. The results show that all three models have accuracy rates above 94%, indicating good identification performance. Finally, with the example, the nonlinear coefficients of the testing signals are compared with the labels of the nonlinear coefficients in the time-frequency images identified by the deep learning model, which confirms the high accuracy of damage identification by the deep learning model.KEYWORDS: Time-frequency imagedeep learningnonlinear ultrasoundnonlinear coefficientconcrete AcknowledgmentsThe authors appreciate everyone who have contributed to the completion of this study.Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThe research is funded by the Scientific and Technological Research Program of Chongqing Municipal Education Commission (Grant No. KJZD-K202100705), the Chongqing Talent Program "Package System" Project (Grant No. cstc2022ycjh-bgzxm0080), the Chongqing Water Conservancy Science and Technology Project (Grant No. CQSLK-2022002) and the Research and Innovation Program for Graduate Students in Chongqing (Grant No. CYB22236).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HHM完成签到,获得积分10
7秒前
tianshanfeihe完成签到 ,获得积分10
8秒前
didididm完成签到,获得积分10
8秒前
所所应助npknpk采纳,获得10
13秒前
吴静完成签到 ,获得积分10
33秒前
王贤平完成签到,获得积分10
36秒前
笔墨纸砚完成签到 ,获得积分10
1分钟前
111完成签到 ,获得积分10
1分钟前
shhoing应助科研通管家采纳,获得10
1分钟前
抚琴祛魅完成签到 ,获得积分10
1分钟前
shhoing应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
虞无声完成签到,获得积分10
1分钟前
shhoing应助科研通管家采纳,获得10
3分钟前
4分钟前
Becky完成签到 ,获得积分10
5分钟前
jfc完成签到 ,获得积分10
5分钟前
shhoing应助科研通管家采纳,获得10
5分钟前
CJY完成签到 ,获得积分10
6分钟前
Sunny完成签到,获得积分10
6分钟前
lululu完成签到 ,获得积分10
6分钟前
arsenal完成签到 ,获得积分10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
shhoing应助科研通管家采纳,获得10
9分钟前
科研通AI2S应助科研通管家采纳,获得10
9分钟前
Ava应助科研通管家采纳,获得10
9分钟前
shhoing应助科研通管家采纳,获得10
9分钟前
科研通AI2S应助科研通管家采纳,获得10
9分钟前
DianaLee完成签到 ,获得积分10
10分钟前
背后访风完成签到 ,获得积分10
10分钟前
小熊同学完成签到 ,获得积分10
11分钟前
爱思考的小笨笨完成签到,获得积分10
11分钟前
muriel完成签到,获得积分0
11分钟前
如歌完成签到,获得积分10
11分钟前
Ava应助科研通管家采纳,获得10
11分钟前
科研通AI2S应助科研通管家采纳,获得10
11分钟前
shhoing应助科研通管家采纳,获得10
11分钟前
王火火完成签到 ,获得积分10
11分钟前
毛毛完成签到,获得积分10
12分钟前
chenxiaofang完成签到 ,获得积分10
13分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5561600
求助须知:如何正确求助?哪些是违规求助? 4646663
关于积分的说明 14678795
捐赠科研通 4588007
什么是DOI,文献DOI怎么找? 2517273
邀请新用户注册赠送积分活动 1490557
关于科研通互助平台的介绍 1461590