亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Nonlinear ultrasonic concrete crack identification with deep learning based on time-frequency image

非线性系统 深度学习 人工智能 超声波传感器 时频分析 计算机科学 傅里叶变换 鉴定(生物学) 模式识别(心理学) 连续小波变换 小波变换 声学 小波 计算机视觉 数学 离散小波变换 数学分析 物理 植物 滤波器(信号处理) 量子力学 生物
作者
Jianfeng Liu,Kui Wang,Mingjie Zhao,Yongjiang Chen
出处
期刊:Nondestructive Testing and Evaluation [Informa]
卷期号:39 (5): 1225-1249 被引量:9
标识
DOI:10.1080/10589759.2023.2250513
摘要

ABSTRACTBy combining time-frequency images and deep learning models, the nonlinear ultrasound signals can be classified, detected, and predicted, using the nonlinear coefficient as a fundamental label for training deep learning models. This integrated approach enables quantitative identification and real-time monitoring of concrete damage, promoting the widespread adoption of nonlinear ultrasonic techniques in engineering applications. As a basis, the relationship between damage variations and nonlinear coefficients is discussed by performing nonlinear ultrasonic damage testing on concrete specimens with different crack lengths and angles. The testing signals are converted into time-frequency images using the short-time Fourier transform and the continuous wavelet transform, and both types of images are combined for data augmentation and input into the deep learning model for training, with nonlinear coefficients serving as labels for the time-frequency images. The MobileNetV2, VGG16, and ResNet18 deep learning models are trained separately on time-frequency image datasets for the length specimens, the angle specimens, and the length-angle specimens, and the performance of the different models is evaluated and compared. The results show that all three models have accuracy rates above 94%, indicating good identification performance. Finally, with the example, the nonlinear coefficients of the testing signals are compared with the labels of the nonlinear coefficients in the time-frequency images identified by the deep learning model, which confirms the high accuracy of damage identification by the deep learning model.KEYWORDS: Time-frequency imagedeep learningnonlinear ultrasoundnonlinear coefficientconcrete AcknowledgmentsThe authors appreciate everyone who have contributed to the completion of this study.Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThe research is funded by the Scientific and Technological Research Program of Chongqing Municipal Education Commission (Grant No. KJZD-K202100705), the Chongqing Talent Program "Package System" Project (Grant No. cstc2022ycjh-bgzxm0080), the Chongqing Water Conservancy Science and Technology Project (Grant No. CQSLK-2022002) and the Research and Innovation Program for Graduate Students in Chongqing (Grant No. CYB22236).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wbs13521发布了新的文献求助10
3秒前
羫孔发布了新的文献求助10
35秒前
科研通AI2S应助羫孔采纳,获得10
45秒前
彭于晏应助哈密瓜采纳,获得50
1分钟前
1分钟前
鲁成危完成签到,获得积分10
1分钟前
2分钟前
2分钟前
哈密瓜发布了新的文献求助50
2分钟前
田様应助哈密瓜采纳,获得50
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
段誉完成签到 ,获得积分10
3分钟前
3分钟前
科研搬运工完成签到,获得积分10
3分钟前
4分钟前
小小完成签到 ,获得积分10
4分钟前
科研通AI2S应助体贴花卷采纳,获得10
5分钟前
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助xfcy采纳,获得10
5分钟前
jarenthar完成签到 ,获得积分10
6分钟前
留下记忆完成签到 ,获得积分10
6分钟前
7分钟前
斯文的难破完成签到 ,获得积分10
7分钟前
Rainbow完成签到 ,获得积分10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
情怀应助科研通管家采纳,获得10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
7分钟前
传奇3应助体贴花卷采纳,获得30
7分钟前
嘒彼小星完成签到 ,获得积分10
8分钟前
8分钟前
9分钟前
Min完成签到 ,获得积分10
9分钟前
10分钟前
坦率迎海zzh完成签到,获得积分10
10分钟前
10分钟前
10分钟前
西山雨完成签到,获得积分10
11分钟前
李爱国应助西山雨采纳,获得10
11分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3314398
求助须知:如何正确求助?哪些是违规求助? 2946641
关于积分的说明 8531229
捐赠科研通 2622376
什么是DOI,文献DOI怎么找? 1434493
科研通“疑难数据库(出版商)”最低求助积分说明 665329
邀请新用户注册赠送积分活动 650881