Nonlinear ultrasonic concrete crack identification with deep learning based on time-frequency image

非线性系统 深度学习 人工智能 超声波传感器 时频分析 计算机科学 傅里叶变换 鉴定(生物学) 模式识别(心理学) 连续小波变换 小波变换 声学 小波 计算机视觉 数学 离散小波变换 数学分析 物理 生物 滤波器(信号处理) 量子力学 植物
作者
Jianfeng Liu,Kui Wang,Mingjie Zhao,Yongjiang Chen
出处
期刊:Nondestructive Testing and Evaluation [Taylor & Francis]
卷期号:39 (5): 1225-1249 被引量:10
标识
DOI:10.1080/10589759.2023.2250513
摘要

ABSTRACTBy combining time-frequency images and deep learning models, the nonlinear ultrasound signals can be classified, detected, and predicted, using the nonlinear coefficient as a fundamental label for training deep learning models. This integrated approach enables quantitative identification and real-time monitoring of concrete damage, promoting the widespread adoption of nonlinear ultrasonic techniques in engineering applications. As a basis, the relationship between damage variations and nonlinear coefficients is discussed by performing nonlinear ultrasonic damage testing on concrete specimens with different crack lengths and angles. The testing signals are converted into time-frequency images using the short-time Fourier transform and the continuous wavelet transform, and both types of images are combined for data augmentation and input into the deep learning model for training, with nonlinear coefficients serving as labels for the time-frequency images. The MobileNetV2, VGG16, and ResNet18 deep learning models are trained separately on time-frequency image datasets for the length specimens, the angle specimens, and the length-angle specimens, and the performance of the different models is evaluated and compared. The results show that all three models have accuracy rates above 94%, indicating good identification performance. Finally, with the example, the nonlinear coefficients of the testing signals are compared with the labels of the nonlinear coefficients in the time-frequency images identified by the deep learning model, which confirms the high accuracy of damage identification by the deep learning model.KEYWORDS: Time-frequency imagedeep learningnonlinear ultrasoundnonlinear coefficientconcrete AcknowledgmentsThe authors appreciate everyone who have contributed to the completion of this study.Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThe research is funded by the Scientific and Technological Research Program of Chongqing Municipal Education Commission (Grant No. KJZD-K202100705), the Chongqing Talent Program "Package System" Project (Grant No. cstc2022ycjh-bgzxm0080), the Chongqing Water Conservancy Science and Technology Project (Grant No. CQSLK-2022002) and the Research and Innovation Program for Graduate Students in Chongqing (Grant No. CYB22236).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助天天向上采纳,获得10
刚刚
陈隆完成签到,获得积分10
4秒前
4秒前
高乾飞完成签到 ,获得积分10
5秒前
河大青椒完成签到,获得积分10
5秒前
丘比特应助动听的秋白采纳,获得10
6秒前
晒黑的雪碧完成签到,获得积分10
7秒前
yao chen完成签到,获得积分10
8秒前
catch完成签到,获得积分10
8秒前
Hrx完成签到,获得积分10
8秒前
哎呀哎呀25完成签到,获得积分10
9秒前
12秒前
Shark完成签到 ,获得积分10
12秒前
我要发财完成签到,获得积分10
13秒前
卡卡罗特完成签到,获得积分10
13秒前
13秒前
天天向上完成签到 ,获得积分10
14秒前
Xinxxx完成签到,获得积分10
14秒前
Echoheart完成签到,获得积分10
14秒前
Hrx发布了新的文献求助10
15秒前
我要发财发布了新的文献求助10
17秒前
WJing发布了新的文献求助10
18秒前
haonanchen完成签到,获得积分10
19秒前
彭于晏应助专注的白柏采纳,获得10
19秒前
99v587完成签到,获得积分10
20秒前
愤怒的小马发布了新的文献求助200
21秒前
朴素海亦完成签到 ,获得积分10
22秒前
wishes完成签到 ,获得积分10
23秒前
23秒前
南城完成签到 ,获得积分10
24秒前
24秒前
26秒前
Andy完成签到,获得积分10
28秒前
伦语发布了新的文献求助10
28秒前
xdc发布了新的文献求助10
30秒前
zoe发布了新的文献求助10
32秒前
ccCherub完成签到,获得积分10
34秒前
霍楠完成签到,获得积分10
34秒前
星辰大海应助rainny采纳,获得10
34秒前
EZ完成签到 ,获得积分10
34秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038368
求助须知:如何正确求助?哪些是违规求助? 3576068
关于积分的说明 11374313
捐赠科研通 3305780
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029