Nonlinear ultrasonic concrete crack identification with deep learning based on time-frequency image

非线性系统 深度学习 人工智能 超声波传感器 时频分析 计算机科学 傅里叶变换 鉴定(生物学) 模式识别(心理学) 连续小波变换 小波变换 声学 小波 计算机视觉 数学 离散小波变换 数学分析 物理 生物 滤波器(信号处理) 量子力学 植物
作者
Jianfeng Liu,Kui Wang,Mingjie Zhao,Yongjiang Chen
出处
期刊:Nondestructive Testing and Evaluation [Taylor & Francis]
卷期号:39 (5): 1225-1249 被引量:10
标识
DOI:10.1080/10589759.2023.2250513
摘要

ABSTRACTBy combining time-frequency images and deep learning models, the nonlinear ultrasound signals can be classified, detected, and predicted, using the nonlinear coefficient as a fundamental label for training deep learning models. This integrated approach enables quantitative identification and real-time monitoring of concrete damage, promoting the widespread adoption of nonlinear ultrasonic techniques in engineering applications. As a basis, the relationship between damage variations and nonlinear coefficients is discussed by performing nonlinear ultrasonic damage testing on concrete specimens with different crack lengths and angles. The testing signals are converted into time-frequency images using the short-time Fourier transform and the continuous wavelet transform, and both types of images are combined for data augmentation and input into the deep learning model for training, with nonlinear coefficients serving as labels for the time-frequency images. The MobileNetV2, VGG16, and ResNet18 deep learning models are trained separately on time-frequency image datasets for the length specimens, the angle specimens, and the length-angle specimens, and the performance of the different models is evaluated and compared. The results show that all three models have accuracy rates above 94%, indicating good identification performance. Finally, with the example, the nonlinear coefficients of the testing signals are compared with the labels of the nonlinear coefficients in the time-frequency images identified by the deep learning model, which confirms the high accuracy of damage identification by the deep learning model.KEYWORDS: Time-frequency imagedeep learningnonlinear ultrasoundnonlinear coefficientconcrete AcknowledgmentsThe authors appreciate everyone who have contributed to the completion of this study.Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThe research is funded by the Scientific and Technological Research Program of Chongqing Municipal Education Commission (Grant No. KJZD-K202100705), the Chongqing Talent Program "Package System" Project (Grant No. cstc2022ycjh-bgzxm0080), the Chongqing Water Conservancy Science and Technology Project (Grant No. CQSLK-2022002) and the Research and Innovation Program for Graduate Students in Chongqing (Grant No. CYB22236).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
隐形曼青应助Huangxy采纳,获得10
4秒前
努力考博完成签到,获得积分10
6秒前
糟糕的台灯完成签到,获得积分10
6秒前
高斯完成签到 ,获得积分10
7秒前
ED应助杭谷波采纳,获得10
8秒前
9秒前
恐龙抗狼完成签到,获得积分10
9秒前
9秒前
完美世界应助小羊枣泥采纳,获得10
12秒前
陈骏康完成签到,获得积分20
13秒前
15秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
Masaccy完成签到,获得积分10
15秒前
16秒前
17秒前
18秒前
ernest发布了新的文献求助30
19秒前
SnRNA发布了新的文献求助20
20秒前
21秒前
21秒前
22秒前
aaa发布了新的文献求助10
23秒前
車侖完成签到 ,获得积分10
23秒前
24秒前
Lele完成签到,获得积分10
24秒前
YamDaamCaa应助xx采纳,获得30
25秒前
wenbo完成签到,获得积分10
25秒前
26秒前
ll发布了新的文献求助10
27秒前
橘子屿布丁完成签到,获得积分10
27秒前
领导范儿应助aaa采纳,获得10
28秒前
28秒前
11122发布了新的文献求助30
28秒前
谨慎长颈鹿完成签到,获得积分10
28秒前
29秒前
31秒前
吕老黄发布了新的文献求助10
31秒前
32秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3971670
求助须知:如何正确求助?哪些是违规求助? 3516348
关于积分的说明 11182142
捐赠科研通 3251567
什么是DOI,文献DOI怎么找? 1795907
邀请新用户注册赠送积分活动 876155
科研通“疑难数据库(出版商)”最低求助积分说明 805318