STMC-GCN: A Span Tagging Multi-channel Graph Convolutional Network for Aspect Sentiment Triplet Extraction

计算机科学 图形 人工智能 稳健性(进化) 注意力网络 特征提取 模式识别(心理学) 理论计算机科学 生物化学 化学 基因
作者
Chao Yang,Jiajie Xing,Xianguo Zhang
出处
期刊:Lecture Notes in Computer Science 卷期号:: 213-227
标识
DOI:10.1007/978-3-031-46661-8_15
摘要

Aspect-Based Sentiment Triplet Extraction (ASTE) is a rapidly growing field in sentiment analysis. While most research has focused on processing the ASTE task either in a pipeline or end-to-end manner, both methods have their limitations. Pipeline methods may accumulate errors in practical applications, while sequence labeling methods in end-to-end approaches may overlook important feature information of the three elements themselves. Additionally, various features in sentences and emotional word markers have not been effectively explored in these methods. To address these limitations, we propose a novel solution called Span Tagging Multi-Channel Graph Convolutional Network (STMC-GCN) that explicitly combines multiple prominent features to extract span-level sentiment triplets, where each span may consist of multiple words and play different roles. Specifically, we designed a three-channel graph fusion model that converts sentences into multiple channels of graphs. These channels extract node text features, centrality features, and position features, which are then extracted through cross-channel convolution operations to obtain a common graph representation shared by different channels. To optimize downstream classification with better results, we use consistency and difference constraints to enhance common attributes and independence. Finally, we explore span-level information and constraints to generate more accurate aspect-based sentiment triplet extractions. Experimental results illustrate that STMC-GCN performs well on multiple datasets, proving the effectiveness and robustness of the model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助李秉烛采纳,获得10
3秒前
平淡的懿轩完成签到,获得积分10
3秒前
3秒前
yu完成签到,获得积分10
3秒前
Gabriel发布了新的文献求助10
3秒前
夏晴晴完成签到,获得积分10
5秒前
wrf发布了新的文献求助10
5秒前
5秒前
华仔应助优美的丹烟采纳,获得10
6秒前
6秒前
fengge完成签到,获得积分10
6秒前
我是老大应助初七123采纳,获得10
7秒前
陈陈发布了新的文献求助10
7秒前
ZSS_ism完成签到,获得积分10
8秒前
tyx完成签到,获得积分10
9秒前
跑快点发布了新的文献求助10
9秒前
9秒前
10秒前
土人完成签到,获得积分10
12秒前
caijie发布了新的文献求助10
12秒前
13秒前
李健应助陈陈采纳,获得10
13秒前
降临完成签到,获得积分20
13秒前
cwwqt完成签到,获得积分10
13秒前
年轻豪英发布了新的文献求助10
13秒前
Cindy完成签到,获得积分20
15秒前
小情绪发布了新的文献求助10
16秒前
aa发布了新的文献求助10
16秒前
风趣笑蓝完成签到,获得积分10
16秒前
16秒前
16秒前
17秒前
17秒前
17秒前
隐形曼青应助fengge采纳,获得10
18秒前
残剑月应助Tree_QD采纳,获得10
18秒前
Gabriel完成签到,获得积分20
19秒前
彭于晏应助星之采纳,获得10
19秒前
zhangzhang完成签到,获得积分10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601299
求助须知:如何正确求助?哪些是违规求助? 4686815
关于积分的说明 14846229
捐赠科研通 4680459
什么是DOI,文献DOI怎么找? 2539291
邀请新用户注册赠送积分活动 1506167
关于科研通互助平台的介绍 1471283