STMC-GCN: A Span Tagging Multi-channel Graph Convolutional Network for Aspect Sentiment Triplet Extraction

计算机科学 图形 人工智能 稳健性(进化) 注意力网络 特征提取 模式识别(心理学) 理论计算机科学 生物化学 化学 基因
作者
Chao Yang,Jiajie Xing,Xianguo Zhang
出处
期刊:Lecture Notes in Computer Science 卷期号:: 213-227
标识
DOI:10.1007/978-3-031-46661-8_15
摘要

Aspect-Based Sentiment Triplet Extraction (ASTE) is a rapidly growing field in sentiment analysis. While most research has focused on processing the ASTE task either in a pipeline or end-to-end manner, both methods have their limitations. Pipeline methods may accumulate errors in practical applications, while sequence labeling methods in end-to-end approaches may overlook important feature information of the three elements themselves. Additionally, various features in sentences and emotional word markers have not been effectively explored in these methods. To address these limitations, we propose a novel solution called Span Tagging Multi-Channel Graph Convolutional Network (STMC-GCN) that explicitly combines multiple prominent features to extract span-level sentiment triplets, where each span may consist of multiple words and play different roles. Specifically, we designed a three-channel graph fusion model that converts sentences into multiple channels of graphs. These channels extract node text features, centrality features, and position features, which are then extracted through cross-channel convolution operations to obtain a common graph representation shared by different channels. To optimize downstream classification with better results, we use consistency and difference constraints to enhance common attributes and independence. Finally, we explore span-level information and constraints to generate more accurate aspect-based sentiment triplet extractions. Experimental results illustrate that STMC-GCN performs well on multiple datasets, proving the effectiveness and robustness of the model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
亭瞳发布了新的文献求助10
刚刚
胖丁完成签到,获得积分10
刚刚
不语完成签到,获得积分10
刚刚
SYLH应助正好采纳,获得10
1秒前
1秒前
咿咿发布了新的文献求助10
2秒前
zyyyyyu发布了新的文献求助10
2秒前
FR完成签到,获得积分10
2秒前
3秒前
甜甜芾完成签到,获得积分10
3秒前
小新完成签到,获得积分10
3秒前
共享精神应助Ashley采纳,获得10
3秒前
CodeCraft应助蔚蔚蓝天采纳,获得10
3秒前
左彦完成签到,获得积分10
4秒前
4秒前
刻苦的芝完成签到,获得积分10
4秒前
w2503完成签到,获得积分10
4秒前
小马甲应助凉笙墨染采纳,获得10
4秒前
JiangHb完成签到,获得积分10
4秒前
憨憨鱼完成签到,获得积分10
5秒前
乔一乔完成签到 ,获得积分10
5秒前
鲤鱼完成签到 ,获得积分10
5秒前
muzi完成签到,获得积分10
6秒前
6秒前
贪玩海之完成签到,获得积分10
6秒前
hkh发布了新的文献求助10
7秒前
腼腆的馒头完成签到,获得积分10
9秒前
大模型应助vinni采纳,获得10
9秒前
紫菜完成签到,获得积分10
9秒前
jinghong完成签到 ,获得积分10
10秒前
ihc完成签到,获得积分10
10秒前
魔幻凡梦完成签到,获得积分10
11秒前
正好完成签到,获得积分10
11秒前
11秒前
12秒前
白白SAMA123完成签到,获得积分10
12秒前
12秒前
大个应助汪爷爷采纳,获得10
13秒前
谷飞飞完成签到,获得积分10
14秒前
15秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016068
求助须知:如何正确求助?哪些是违规求助? 3556043
关于积分的说明 11319836
捐赠科研通 3289063
什么是DOI,文献DOI怎么找? 1812373
邀请新用户注册赠送积分活动 887923
科研通“疑难数据库(出版商)”最低求助积分说明 812044