STMC-GCN: A Span Tagging Multi-channel Graph Convolutional Network for Aspect Sentiment Triplet Extraction

计算机科学 图形 人工智能 稳健性(进化) 注意力网络 特征提取 模式识别(心理学) 理论计算机科学 生物化学 化学 基因
作者
Chao Yang,Jiajie Xing,Xianguo Zhang
出处
期刊:Lecture Notes in Computer Science 卷期号:: 213-227
标识
DOI:10.1007/978-3-031-46661-8_15
摘要

Aspect-Based Sentiment Triplet Extraction (ASTE) is a rapidly growing field in sentiment analysis. While most research has focused on processing the ASTE task either in a pipeline or end-to-end manner, both methods have their limitations. Pipeline methods may accumulate errors in practical applications, while sequence labeling methods in end-to-end approaches may overlook important feature information of the three elements themselves. Additionally, various features in sentences and emotional word markers have not been effectively explored in these methods. To address these limitations, we propose a novel solution called Span Tagging Multi-Channel Graph Convolutional Network (STMC-GCN) that explicitly combines multiple prominent features to extract span-level sentiment triplets, where each span may consist of multiple words and play different roles. Specifically, we designed a three-channel graph fusion model that converts sentences into multiple channels of graphs. These channels extract node text features, centrality features, and position features, which are then extracted through cross-channel convolution operations to obtain a common graph representation shared by different channels. To optimize downstream classification with better results, we use consistency and difference constraints to enhance common attributes and independence. Finally, we explore span-level information and constraints to generate more accurate aspect-based sentiment triplet extractions. Experimental results illustrate that STMC-GCN performs well on multiple datasets, proving the effectiveness and robustness of the model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
见雨鱼完成签到 ,获得积分10
刚刚
刚刚
刚刚
哎哟很烦完成签到,获得积分10
刚刚
刚刚
Hello应助zyd采纳,获得10
1秒前
哈力栗发布了新的文献求助10
1秒前
1秒前
xiaobai应助luul采纳,获得10
1秒前
尊敬的芷卉完成签到,获得积分10
1秒前
kexuezhongxinhu完成签到 ,获得积分10
1秒前
文杰发布了新的文献求助10
2秒前
2秒前
kyf发布了新的文献求助10
2秒前
fanfan发布了新的文献求助10
2秒前
lan完成签到,获得积分10
2秒前
科研通AI6应助DOCTORLI采纳,获得10
2秒前
大冰发布了新的文献求助10
2秒前
3秒前
刻苦大门发布了新的文献求助10
3秒前
可爱乐曲发布了新的文献求助10
3秒前
追剧狂魔完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
123发布了新的文献求助10
4秒前
CodeCraft应助ahai采纳,获得10
5秒前
123完成签到,获得积分10
5秒前
lsy关注了科研通微信公众号
5秒前
情怀应助Bloved采纳,获得10
5秒前
威武板栗发布了新的文献求助10
5秒前
cdx完成签到,获得积分10
6秒前
小生不才完成签到 ,获得积分20
6秒前
oneday完成签到,获得积分10
6秒前
JAJ发布了新的文献求助10
6秒前
qiyi93完成签到,获得积分10
6秒前
6秒前
科研通AI6应助拉长的念露采纳,获得10
6秒前
顾矜应助阳光的书本采纳,获得10
6秒前
huihuo完成签到,获得积分10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Vertebrate Palaeontology, 5th Edition 500
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5327126
求助须知:如何正确求助?哪些是违规求助? 4467261
关于积分的说明 13900385
捐赠科研通 4359816
什么是DOI,文献DOI怎么找? 2394793
邀请新用户注册赠送积分活动 1388362
关于科研通互助平台的介绍 1359091