工艺工程
气泡
计算机科学
泡沫浮选
纳米技术
超细粒子
材料科学
环境科学
工程类
冶金
并行计算
作者
Min Uk Jung,Yeo Cheon Kim,Ghislain Bournival,Seher Ata
标识
DOI:10.1016/j.cis.2023.103047
摘要
The depletion of high-grade and coarse-grain ores has led to an increasing demand for the development of efficient separation technologies for low-grade and fine-grain ores. However, conventional froth flotation techniques are not adequate to efficiently recover fine and ultrafine particles (typically <10-15 μm) due to the low collision probability between these particles and the relatively large bubbles used in the process. The introduction of microbubbles has shown promise in enhancing particle recovery, making it a subject of significant interest. Thus, this review focuses on microbubble generation methods that have the potential to be scaled up for industrial applications, with a specific emphasis on their suitability for froth flotation. The methods are categorized based on their scalability: high-hydrodynamic cavitation, porous media/medium-dissolved air, electrolysis/low-microfluidics, and acoustic methods. The bubble generation mechanisms, characteristics, advantages and limitations of each method and its applications in froth flotation are discussed to provide suggestions for improvement. There is still no appropriate technology that can optimize bubble size distribution, production rate and cost together for industrial froth flotation application. Therefore, novel approaches of combining multiple methods are also explored to achieve the potential synergic effects. By addressing the limitations of current microbubble generation methods and proposing potential enhancements, this review aims to contribute to the development of efficient and cost-effective microbubble generation technologies for fine and ultrafine particles in the froth flotation industry.
科研通智能强力驱动
Strongly Powered by AbleSci AI