Sonoelectrochemical system mechanisms, design, and machine learning for predicting degradation kinetic constants of pharmaceutical pollutants

电解质 污染物 降级(电信) 电极 化学 支撑电解质 反应速率常数 阳极 电化学 生物系统 分析化学(期刊) 化学工程 材料科学 计算机科学 色谱法 动力学 有机化学 物理化学 物理 电信 工程类 量子力学 生物
作者
Yongyue Zhou,Yangmin Ren,Mingcan Cui,Fengshi Guo,Shiyu Sun,Junjun Ma,Zhengchang Han,Jeehyeong Khim
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:478: 147266-147266 被引量:6
标识
DOI:10.1016/j.cej.2023.147266
摘要

This study explores the mechanism, design, and application of machine learning in the sonoelectrochemical (US-EC) systems and select ibuprofen (IBP) as the target pollutant. Mechanism investigation shows that OH and S O4·- are the primary chemical oxidation species through scavenger experiments. Based on the heterogeneous nucleation mechanism, the electrodes in the ultrasound (US) system play the role of electrode-sonocataliytic and can promote the degradation kinetic constant of pharmaceutical pollutants. The effects of design parameters, including US frequency, voltage, electrolyte, electrode area, gap, and position on IBP degradation were investigated. The results demonstrated that under optimized parameters: US frequency of 35 kHz, voltage of 5 V, 0.1 M Na2SO4 electrolyte, 1.5 cm gap, and placement at P8, the US-EC system achieved a kinetic constant of 0.016 min−1. Chemiluminescence was used to visualize the spatial distribution of the oxidant, and provided theoretical support for mechanism and design parameter optimization. The eXtreme Gradient Boosting model was used to predict the kinetic constant of pharmaceutical contaminants including IBP, indicating excellent model performance with results of R2 and RMSE reaching 0.98 and 0.0005, respectively. SHapley Additive exPlanations was employed to assess the impact of design parameters on pharmaceutical pollutants degradation. The results showed that US frequency, US power, and the distance 'r' from the US transmitter to the anode have the most significant impact on the prediction performance of the model. Two sets of new experiments were verified using this model, and the prediction accuracy reached 76% and 82% respectively, demonstrating that machine learning can effectively predict the kinetic constants of pharmaceutical contaminants under complex factors affecting the US-EC system, assisting researchers in swiftly evaluating the system's pollutant treatment performance and simplifying the experimental workload.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
rosy完成签到,获得积分10
刚刚
rjy完成签到 ,获得积分10
刚刚
1秒前
沙111发布了新的文献求助10
1秒前
MADKAI发布了新的文献求助10
1秒前
2秒前
zhoull完成签到 ,获得积分10
2秒前
2秒前
2秒前
学术蝗虫发布了新的文献求助10
2秒前
aurora完成签到,获得积分10
3秒前
bopbopbaby发布了新的文献求助200
3秒前
sll完成签到,获得积分10
3秒前
犹豫的一斩应助迅速冰岚采纳,获得10
3秒前
聂裕铭完成签到 ,获得积分10
3秒前
谦让成协完成签到,获得积分10
4秒前
4秒前
大个应助侦察兵采纳,获得10
4秒前
科研通AI5应助猪猪hero采纳,获得10
4秒前
4秒前
4秒前
WilsonT完成签到,获得积分10
4秒前
SDS发布了新的文献求助10
5秒前
LLL发布了新的文献求助10
5秒前
爆米花应助娜行采纳,获得10
6秒前
6秒前
虫二队长完成签到,获得积分10
6秒前
6秒前
manan发布了新的文献求助10
6秒前
铸一字错完成签到,获得积分10
6秒前
6秒前
诚c完成签到,获得积分10
6秒前
正在输入中应助niu1采纳,获得10
7秒前
7秒前
王大帅哥完成签到,获得积分10
7秒前
qianhuxinyu完成签到,获得积分10
7秒前
7秒前
烟雾发布了新的文献求助10
7秒前
8秒前
宁听白完成签到,获得积分10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678