Sonoelectrochemical system mechanisms, design, and machine learning for predicting degradation kinetic constants of pharmaceutical pollutants

电解质 污染物 降级(电信) 电极 化学 支撑电解质 反应速率常数 阳极 电化学 生物系统 分析化学(期刊) 化学工程 材料科学 计算机科学 色谱法 动力学 有机化学 物理化学 物理 电信 工程类 量子力学 生物
作者
Yongyue Zhou,Yangmin Ren,Mingcan Cui,Fengshi Guo,Shiyu Sun,Junjun Ma,Zhengchang Han,Jeehyeong Khim
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:478: 147266-147266 被引量:6
标识
DOI:10.1016/j.cej.2023.147266
摘要

This study explores the mechanism, design, and application of machine learning in the sonoelectrochemical (US-EC) systems and select ibuprofen (IBP) as the target pollutant. Mechanism investigation shows that OH and S O4·- are the primary chemical oxidation species through scavenger experiments. Based on the heterogeneous nucleation mechanism, the electrodes in the ultrasound (US) system play the role of electrode-sonocataliytic and can promote the degradation kinetic constant of pharmaceutical pollutants. The effects of design parameters, including US frequency, voltage, electrolyte, electrode area, gap, and position on IBP degradation were investigated. The results demonstrated that under optimized parameters: US frequency of 35 kHz, voltage of 5 V, 0.1 M Na2SO4 electrolyte, 1.5 cm gap, and placement at P8, the US-EC system achieved a kinetic constant of 0.016 min−1. Chemiluminescence was used to visualize the spatial distribution of the oxidant, and provided theoretical support for mechanism and design parameter optimization. The eXtreme Gradient Boosting model was used to predict the kinetic constant of pharmaceutical contaminants including IBP, indicating excellent model performance with results of R2 and RMSE reaching 0.98 and 0.0005, respectively. SHapley Additive exPlanations was employed to assess the impact of design parameters on pharmaceutical pollutants degradation. The results showed that US frequency, US power, and the distance 'r' from the US transmitter to the anode have the most significant impact on the prediction performance of the model. Two sets of new experiments were verified using this model, and the prediction accuracy reached 76% and 82% respectively, demonstrating that machine learning can effectively predict the kinetic constants of pharmaceutical contaminants under complex factors affecting the US-EC system, assisting researchers in swiftly evaluating the system's pollutant treatment performance and simplifying the experimental workload.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
orixero应助酷炫的若之采纳,获得10
2秒前
2秒前
SciGPT应助Wxj246801采纳,获得10
2秒前
4秒前
泥娃娃完成签到,获得积分10
4秒前
彭于晏应助江南烟雨如笙采纳,获得10
5秒前
Wayne发布了新的文献求助10
5秒前
海豹球QUQ关注了科研通微信公众号
6秒前
欢呼的依秋完成签到,获得积分10
7秒前
顺利的慕儿完成签到 ,获得积分10
8秒前
莫小烦发布了新的文献求助10
9秒前
1115440110关注了科研通微信公众号
9秒前
9秒前
研友_txj完成签到,获得积分20
9秒前
YUN发布了新的文献求助10
10秒前
我是老大应助fle采纳,获得30
10秒前
12秒前
JamesPei应助tao采纳,获得10
13秒前
13秒前
14秒前
阿叶同学完成签到,获得积分10
14秒前
疯狂的语兰完成签到,获得积分10
15秒前
在水一方应助wang采纳,获得40
15秒前
16秒前
permanent发布了新的文献求助10
16秒前
juan完成签到,获得积分10
17秒前
19秒前
19秒前
二十八化生完成签到 ,获得积分10
20秒前
WILAY889完成签到,获得积分10
21秒前
22秒前
万能图书馆应助volvoamg采纳,获得10
22秒前
22秒前
Endlessway给宋德宇的求助进行了留言
22秒前
超级路人发布了新的文献求助30
24秒前
li完成签到,获得积分10
24秒前
脑洞疼应助乔Q采纳,获得10
25秒前
ZJZALLEN完成签到 ,获得积分10
25秒前
高分求助中
求国内可以测试或购买Loschmidt cell(或相同原理器件)的机构信息 1000
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3219300
求助须知:如何正确求助?哪些是违规求助? 2868223
关于积分的说明 8159815
捐赠科研通 2535246
什么是DOI,文献DOI怎么找? 1367634
科研通“疑难数据库(出版商)”最低求助积分说明 645072
邀请新用户注册赠送积分活动 618298