已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

M-MultiSVM: An efficient feature selection assisted network intrusion detection system using machine learning

计算机科学 入侵检测系统 特征选择 人工智能 规范化(社会学) 机器学习 数据挖掘 过度拟合 奇异值分解 过采样 人工神经网络 带宽(计算) 人类学 计算机网络 社会学
作者
Anil V. Turukmane,Ramkumar Devendiran
出处
期刊:Computers & Security [Elsevier]
卷期号:137: 103587-103587 被引量:21
标识
DOI:10.1016/j.cose.2023.103587
摘要

The intrusions are increasing daily, so there is a huge amount of privacy violations, financial loss, illegal transferring of information, etc. Various forms of intrusion occur in networks, such as menacing networks, computer resources and network information. Each type of intrusion focuses on specified tasks, whereas the hackers may focus on stealing confidential data, industrial secrets and personal information, which is then leaked to others for illegal gains. Due to the false detection of attacks in the security and changing environmental fields, limitations like data lagging on actual attacks and sustaining financial harms occur. To resolve this, automatic abnormality detection systems are required to secure the required computing ability and to analyze the attacks. Hence, an efficient automated intrusion detection system using machine learning methodology is proposed in this research paper. Initially, the data are gathered from CSE-CIC-IDS 2018 and UNSW-NB15 datasets. The acquired data are pre-processed using Null value handling and Min-Max normalization. Null value handling is used to remove missing values and irrelevant parameters. Min-Max normalization adjusted the unnormalized data in the pre-processing stage. After pre-processing, the class imbalance problem is reduced by using the Advanced Synthetic Minority Oversampling Technique (ASmoT). ASmoT aims to balance the class and reduce imbalance class problems and overfitting issues. The next phase is feature extraction, which is performed by Modified Singular Value Decomposition (M-SvD). M-SvD extracts essential features such as basic features, content features and traffic features from the input. The extracted features are optimized by the Opposition-based Northern Goshawk Optimization algorithm (ONgO). These optimal features are able to produce optimal output. After feature selection, the different types of attacks are classified by a hybrid machine learning model called Mud Ring assisted multilayer support vector machine (M-MultiSVM) and finally, the hyperparameters are tuned by the Mud Ring optimization algorithm. Thus, the proposed M-MultiSVM model can efficiently detect intrusion in the network. The performance metrics show that the proposed system achieved 99.89 % accuracy by using the CSE-CIC-IDS 2018 dataset; also, the proposed system achieved 97.535 % accuracy by using the UNSW-NB15 dataset.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘿嘿发布了新的文献求助10
3秒前
suansuan完成签到,获得积分10
5秒前
Akim应助ttssooe采纳,获得10
7秒前
量子星尘发布了新的文献求助10
9秒前
William_l_c完成签到,获得积分10
10秒前
11秒前
李健应助Aipoi1采纳,获得10
14秒前
chuan完成签到,获得积分20
17秒前
冰泪紫沫发布了新的文献求助10
18秒前
LAN完成签到,获得积分10
21秒前
儒雅的十八完成签到,获得积分10
22秒前
23秒前
123发布了新的文献求助10
24秒前
25秒前
Aipoi1发布了新的文献求助10
27秒前
冬柳完成签到,获得积分10
27秒前
冬柳发布了新的文献求助10
30秒前
ycy完成签到 ,获得积分10
31秒前
传奇3应助冰泪紫沫采纳,获得30
32秒前
Cynthia完成签到 ,获得积分0
34秒前
bkagyin应助123采纳,获得10
37秒前
djbj2022发布了新的文献求助10
38秒前
于木完成签到 ,获得积分10
40秒前
大个应助qiushuang采纳,获得10
40秒前
SciGPT应助嘿嘿采纳,获得10
43秒前
无限青槐完成签到,获得积分10
43秒前
深情的楷瑞完成签到 ,获得积分10
44秒前
无花果应助狂野傲南采纳,获得10
45秒前
吴茂林完成签到,获得积分10
46秒前
浮游应助空蝉采纳,获得10
46秒前
852应助Dave采纳,获得10
50秒前
崇林同学完成签到,获得积分10
52秒前
追寻友桃发布了新的文献求助10
52秒前
Lojong完成签到,获得积分10
55秒前
L1完成签到 ,获得积分10
56秒前
科研通AI2S应助cc采纳,获得10
1分钟前
1分钟前
1分钟前
隐形曼青应助小智采纳,获得10
1分钟前
Ava应助Alpha采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5528747
求助须知:如何正确求助?哪些是违规求助? 4618195
关于积分的说明 14562134
捐赠科研通 4557054
什么是DOI,文献DOI怎么找? 2497330
邀请新用户注册赠送积分活动 1477552
关于科研通互助平台的介绍 1448838