亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

M-MultiSVM: An efficient feature selection assisted network intrusion detection system using machine learning

计算机科学 入侵检测系统 特征选择 人工智能 规范化(社会学) 机器学习 数据挖掘 过度拟合 奇异值分解 过采样 人工神经网络 带宽(计算) 人类学 计算机网络 社会学
作者
Anil V. Turukmane,Ramkumar Devendiran
出处
期刊:Computers & Security [Elsevier]
卷期号:137: 103587-103587 被引量:21
标识
DOI:10.1016/j.cose.2023.103587
摘要

The intrusions are increasing daily, so there is a huge amount of privacy violations, financial loss, illegal transferring of information, etc. Various forms of intrusion occur in networks, such as menacing networks, computer resources and network information. Each type of intrusion focuses on specified tasks, whereas the hackers may focus on stealing confidential data, industrial secrets and personal information, which is then leaked to others for illegal gains. Due to the false detection of attacks in the security and changing environmental fields, limitations like data lagging on actual attacks and sustaining financial harms occur. To resolve this, automatic abnormality detection systems are required to secure the required computing ability and to analyze the attacks. Hence, an efficient automated intrusion detection system using machine learning methodology is proposed in this research paper. Initially, the data are gathered from CSE-CIC-IDS 2018 and UNSW-NB15 datasets. The acquired data are pre-processed using Null value handling and Min-Max normalization. Null value handling is used to remove missing values and irrelevant parameters. Min-Max normalization adjusted the unnormalized data in the pre-processing stage. After pre-processing, the class imbalance problem is reduced by using the Advanced Synthetic Minority Oversampling Technique (ASmoT). ASmoT aims to balance the class and reduce imbalance class problems and overfitting issues. The next phase is feature extraction, which is performed by Modified Singular Value Decomposition (M-SvD). M-SvD extracts essential features such as basic features, content features and traffic features from the input. The extracted features are optimized by the Opposition-based Northern Goshawk Optimization algorithm (ONgO). These optimal features are able to produce optimal output. After feature selection, the different types of attacks are classified by a hybrid machine learning model called Mud Ring assisted multilayer support vector machine (M-MultiSVM) and finally, the hyperparameters are tuned by the Mud Ring optimization algorithm. Thus, the proposed M-MultiSVM model can efficiently detect intrusion in the network. The performance metrics show that the proposed system achieved 99.89 % accuracy by using the CSE-CIC-IDS 2018 dataset; also, the proposed system achieved 97.535 % accuracy by using the UNSW-NB15 dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
皮皮发布了新的文献求助30
6秒前
实干的多春鱼完成签到,获得积分10
9秒前
13秒前
我是老大应助wuliangliang1211采纳,获得10
31秒前
黄婷萱发布了新的文献求助10
32秒前
皮皮完成签到,获得积分10
34秒前
所所应助科研通管家采纳,获得10
37秒前
传奇3应助科研通管家采纳,获得10
37秒前
Criminology34应助科研通管家采纳,获得30
38秒前
Criminology34应助科研通管家采纳,获得10
38秒前
39秒前
41秒前
嘻嘻哈哈应助黄婷萱采纳,获得10
46秒前
46秒前
独特的不尤完成签到,获得积分10
58秒前
黄婷萱完成签到,获得积分20
1分钟前
1分钟前
今后应助freedom采纳,获得10
1分钟前
snail完成签到,获得积分10
1分钟前
1分钟前
1分钟前
淡淡十三发布了新的文献求助10
1分钟前
CipherSage应助淡淡十三采纳,获得10
1分钟前
1分钟前
半夏完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
DBP87弹完成签到 ,获得积分10
1分钟前
伊娃发布了新的文献求助10
1分钟前
1分钟前
科研花完成签到 ,获得积分10
2分钟前
伊娃完成签到 ,获得积分10
2分钟前
自觉汽车完成签到,获得积分10
2分钟前
2分钟前
ESTER完成签到 ,获得积分10
2分钟前
2分钟前
王者归来完成签到,获得积分10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5302033
求助须知:如何正确求助?哪些是违规求助? 4449329
关于积分的说明 13848232
捐赠科研通 4335497
什么是DOI,文献DOI怎么找? 2380331
邀请新用户注册赠送积分活动 1375325
关于科研通互助平台的介绍 1341472