M-MultiSVM: An efficient feature selection assisted network intrusion detection system using machine learning

计算机科学 入侵检测系统 特征选择 人工智能 规范化(社会学) 机器学习 数据挖掘 过度拟合 奇异值分解 过采样 人工神经网络 带宽(计算) 计算机网络 社会学 人类学
作者
Anil V. Turukmane,Ramkumar Devendiran
出处
期刊:Computers & Security [Elsevier]
卷期号:137: 103587-103587 被引量:21
标识
DOI:10.1016/j.cose.2023.103587
摘要

The intrusions are increasing daily, so there is a huge amount of privacy violations, financial loss, illegal transferring of information, etc. Various forms of intrusion occur in networks, such as menacing networks, computer resources and network information. Each type of intrusion focuses on specified tasks, whereas the hackers may focus on stealing confidential data, industrial secrets and personal information, which is then leaked to others for illegal gains. Due to the false detection of attacks in the security and changing environmental fields, limitations like data lagging on actual attacks and sustaining financial harms occur. To resolve this, automatic abnormality detection systems are required to secure the required computing ability and to analyze the attacks. Hence, an efficient automated intrusion detection system using machine learning methodology is proposed in this research paper. Initially, the data are gathered from CSE-CIC-IDS 2018 and UNSW-NB15 datasets. The acquired data are pre-processed using Null value handling and Min-Max normalization. Null value handling is used to remove missing values and irrelevant parameters. Min-Max normalization adjusted the unnormalized data in the pre-processing stage. After pre-processing, the class imbalance problem is reduced by using the Advanced Synthetic Minority Oversampling Technique (ASmoT). ASmoT aims to balance the class and reduce imbalance class problems and overfitting issues. The next phase is feature extraction, which is performed by Modified Singular Value Decomposition (M-SvD). M-SvD extracts essential features such as basic features, content features and traffic features from the input. The extracted features are optimized by the Opposition-based Northern Goshawk Optimization algorithm (ONgO). These optimal features are able to produce optimal output. After feature selection, the different types of attacks are classified by a hybrid machine learning model called Mud Ring assisted multilayer support vector machine (M-MultiSVM) and finally, the hyperparameters are tuned by the Mud Ring optimization algorithm. Thus, the proposed M-MultiSVM model can efficiently detect intrusion in the network. The performance metrics show that the proposed system achieved 99.89 % accuracy by using the CSE-CIC-IDS 2018 dataset; also, the proposed system achieved 97.535 % accuracy by using the UNSW-NB15 dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1234发布了新的文献求助10
1秒前
干净含烟完成签到,获得积分10
2秒前
3秒前
深情安青应助王治豪采纳,获得10
4秒前
cy发布了新的文献求助10
5秒前
阔达莫英完成签到,获得积分10
6秒前
完美梨愁完成签到 ,获得积分10
6秒前
张晓芳发布了新的文献求助10
7秒前
maybe完成签到,获得积分10
9秒前
王治豪完成签到,获得积分10
12秒前
坦率的妙柏给坦率的妙柏的求助进行了留言
12秒前
水杯不离手完成签到 ,获得积分10
13秒前
廖英健完成签到 ,获得积分10
14秒前
14秒前
涛哥来科研完成签到 ,获得积分10
14秒前
传统的斓完成签到 ,获得积分10
14秒前
颜诺完成签到,获得积分10
15秒前
南宫萍完成签到,获得积分10
16秒前
16秒前
wanci应助李朝富采纳,获得10
18秒前
丢丢完成签到,获得积分10
19秒前
John完成签到,获得积分10
20秒前
Frank发布了新的文献求助30
20秒前
22秒前
23秒前
24秒前
fzh发布了新的文献求助10
24秒前
hyhyhyhy发布了新的文献求助10
27秒前
28秒前
29秒前
29秒前
31秒前
1234完成签到,获得积分20
31秒前
科研通AI2S应助地中海采纳,获得30
32秒前
Saliya发布了新的文献求助10
32秒前
善学以致用应助fzh采纳,获得10
33秒前
无奈曼云完成签到,获得积分10
34秒前
34秒前
ding应助畅快访蕊采纳,获得10
35秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140205
求助须知:如何正确求助?哪些是违规求助? 2790982
关于积分的说明 7797336
捐赠科研通 2447358
什么是DOI,文献DOI怎么找? 1301860
科研通“疑难数据库(出版商)”最低求助积分说明 626345
版权声明 601194