M-MultiSVM: An efficient feature selection assisted network intrusion detection system using machine learning

计算机科学 入侵检测系统 特征选择 人工智能 规范化(社会学) 机器学习 数据挖掘 过度拟合 奇异值分解 过采样 人工神经网络 带宽(计算) 人类学 计算机网络 社会学
作者
Anil V. Turukmane,Ramkumar Devendiran
出处
期刊:Computers & Security [Elsevier]
卷期号:137: 103587-103587 被引量:21
标识
DOI:10.1016/j.cose.2023.103587
摘要

The intrusions are increasing daily, so there is a huge amount of privacy violations, financial loss, illegal transferring of information, etc. Various forms of intrusion occur in networks, such as menacing networks, computer resources and network information. Each type of intrusion focuses on specified tasks, whereas the hackers may focus on stealing confidential data, industrial secrets and personal information, which is then leaked to others for illegal gains. Due to the false detection of attacks in the security and changing environmental fields, limitations like data lagging on actual attacks and sustaining financial harms occur. To resolve this, automatic abnormality detection systems are required to secure the required computing ability and to analyze the attacks. Hence, an efficient automated intrusion detection system using machine learning methodology is proposed in this research paper. Initially, the data are gathered from CSE-CIC-IDS 2018 and UNSW-NB15 datasets. The acquired data are pre-processed using Null value handling and Min-Max normalization. Null value handling is used to remove missing values and irrelevant parameters. Min-Max normalization adjusted the unnormalized data in the pre-processing stage. After pre-processing, the class imbalance problem is reduced by using the Advanced Synthetic Minority Oversampling Technique (ASmoT). ASmoT aims to balance the class and reduce imbalance class problems and overfitting issues. The next phase is feature extraction, which is performed by Modified Singular Value Decomposition (M-SvD). M-SvD extracts essential features such as basic features, content features and traffic features from the input. The extracted features are optimized by the Opposition-based Northern Goshawk Optimization algorithm (ONgO). These optimal features are able to produce optimal output. After feature selection, the different types of attacks are classified by a hybrid machine learning model called Mud Ring assisted multilayer support vector machine (M-MultiSVM) and finally, the hyperparameters are tuned by the Mud Ring optimization algorithm. Thus, the proposed M-MultiSVM model can efficiently detect intrusion in the network. The performance metrics show that the proposed system achieved 99.89 % accuracy by using the CSE-CIC-IDS 2018 dataset; also, the proposed system achieved 97.535 % accuracy by using the UNSW-NB15 dataset.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zho发布了新的文献求助10
1秒前
1秒前
科研通AI6应助蓝朱采纳,获得10
2秒前
Ava应助月落云何起采纳,获得10
2秒前
科研通AI6应助蓝朱采纳,获得10
2秒前
Hello应助Liens采纳,获得10
2秒前
科研摸鱼怪完成签到,获得积分10
2秒前
wave完成签到,获得积分10
3秒前
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
sjll完成签到,获得积分10
5秒前
浮游应助勤恳的一斩采纳,获得10
5秒前
李李完成签到,获得积分10
6秒前
留白完成签到,获得积分10
7秒前
大个应助凯圣王采纳,获得10
7秒前
禾之发布了新的文献求助10
7秒前
8秒前
刘秀发完成签到,获得积分10
8秒前
江峰完成签到,获得积分10
8秒前
8秒前
8秒前
李健的小迷弟应助LY采纳,获得10
9秒前
XinSha发布了新的文献求助30
10秒前
10秒前
Kylie完成签到,获得积分10
10秒前
Liens完成签到,获得积分10
10秒前
12秒前
烟雨平生发布了新的文献求助10
12秒前
13秒前
13秒前
14秒前
14秒前
Liens发布了新的文献求助10
14秒前
14秒前
宁异勿同发布了新的文献求助10
15秒前
zzw发布了新的文献求助30
15秒前
xwxhbydmet发布了新的文献求助10
16秒前
零一秒发布了新的文献求助10
16秒前
叫我天秀标哥完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5577176
求助须知:如何正确求助?哪些是违规求助? 4662454
关于积分的说明 14741703
捐赠科研通 4603093
什么是DOI,文献DOI怎么找? 2526103
邀请新用户注册赠送积分活动 1495999
关于科研通互助平台的介绍 1465483