M-MultiSVM: An efficient feature selection assisted network intrusion detection system using machine learning

计算机科学 入侵检测系统 特征选择 人工智能 规范化(社会学) 机器学习 数据挖掘 过度拟合 奇异值分解 过采样 人工神经网络 带宽(计算) 人类学 计算机网络 社会学
作者
Anil V. Turukmane,Ramkumar Devendiran
出处
期刊:Computers & Security [Elsevier BV]
卷期号:137: 103587-103587 被引量:21
标识
DOI:10.1016/j.cose.2023.103587
摘要

The intrusions are increasing daily, so there is a huge amount of privacy violations, financial loss, illegal transferring of information, etc. Various forms of intrusion occur in networks, such as menacing networks, computer resources and network information. Each type of intrusion focuses on specified tasks, whereas the hackers may focus on stealing confidential data, industrial secrets and personal information, which is then leaked to others for illegal gains. Due to the false detection of attacks in the security and changing environmental fields, limitations like data lagging on actual attacks and sustaining financial harms occur. To resolve this, automatic abnormality detection systems are required to secure the required computing ability and to analyze the attacks. Hence, an efficient automated intrusion detection system using machine learning methodology is proposed in this research paper. Initially, the data are gathered from CSE-CIC-IDS 2018 and UNSW-NB15 datasets. The acquired data are pre-processed using Null value handling and Min-Max normalization. Null value handling is used to remove missing values and irrelevant parameters. Min-Max normalization adjusted the unnormalized data in the pre-processing stage. After pre-processing, the class imbalance problem is reduced by using the Advanced Synthetic Minority Oversampling Technique (ASmoT). ASmoT aims to balance the class and reduce imbalance class problems and overfitting issues. The next phase is feature extraction, which is performed by Modified Singular Value Decomposition (M-SvD). M-SvD extracts essential features such as basic features, content features and traffic features from the input. The extracted features are optimized by the Opposition-based Northern Goshawk Optimization algorithm (ONgO). These optimal features are able to produce optimal output. After feature selection, the different types of attacks are classified by a hybrid machine learning model called Mud Ring assisted multilayer support vector machine (M-MultiSVM) and finally, the hyperparameters are tuned by the Mud Ring optimization algorithm. Thus, the proposed M-MultiSVM model can efficiently detect intrusion in the network. The performance metrics show that the proposed system achieved 99.89 % accuracy by using the CSE-CIC-IDS 2018 dataset; also, the proposed system achieved 97.535 % accuracy by using the UNSW-NB15 dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Yun完成签到 ,获得积分10
1秒前
糖木发布了新的文献求助50
1秒前
Jasper应助风起青萍之末采纳,获得10
2秒前
yanglan完成签到,获得积分10
2秒前
hsy完成签到,获得积分10
4秒前
Bob完成签到,获得积分10
5秒前
6秒前
cessy完成签到,获得积分10
6秒前
小明发布了新的文献求助10
6秒前
玩命的芝麻完成签到,获得积分20
10秒前
musicyy222完成签到,获得积分10
10秒前
10秒前
zybbb发布了新的文献求助10
10秒前
咕咕咕咕咕完成签到 ,获得积分10
10秒前
TAO完成签到,获得积分10
12秒前
79发布了新的文献求助10
12秒前
12秒前
一人一般发布了新的文献求助10
13秒前
zzz完成签到 ,获得积分10
13秒前
14秒前
时光静好关注了科研通微信公众号
14秒前
在学一会完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
15秒前
Marvel发布了新的文献求助10
16秒前
16秒前
17秒前
hotcas完成签到,获得积分10
17秒前
18秒前
阴天种花完成签到 ,获得积分10
18秒前
花儿完成签到,获得积分20
18秒前
FM012发布了新的文献求助10
19秒前
清漪完成签到,获得积分10
19秒前
19秒前
20秒前
20秒前
Akebi完成签到,获得积分20
20秒前
一人一般完成签到,获得积分10
20秒前
弱水应助整齐的灵雁采纳,获得20
21秒前
rui发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4898025
求助须知:如何正确求助?哪些是违规求助? 4178956
关于积分的说明 12973261
捐赠科研通 3942745
什么是DOI,文献DOI怎么找? 2162801
邀请新用户注册赠送积分活动 1181423
关于科研通互助平台的介绍 1086842