已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

M-MultiSVM: An efficient feature selection assisted network intrusion detection system using machine learning

计算机科学 入侵检测系统 特征选择 人工智能 规范化(社会学) 机器学习 数据挖掘 过度拟合 奇异值分解 过采样 人工神经网络 带宽(计算) 人类学 计算机网络 社会学
作者
Anil V. Turukmane,Ramkumar Devendiran
出处
期刊:Computers & Security [Elsevier]
卷期号:137: 103587-103587 被引量:21
标识
DOI:10.1016/j.cose.2023.103587
摘要

The intrusions are increasing daily, so there is a huge amount of privacy violations, financial loss, illegal transferring of information, etc. Various forms of intrusion occur in networks, such as menacing networks, computer resources and network information. Each type of intrusion focuses on specified tasks, whereas the hackers may focus on stealing confidential data, industrial secrets and personal information, which is then leaked to others for illegal gains. Due to the false detection of attacks in the security and changing environmental fields, limitations like data lagging on actual attacks and sustaining financial harms occur. To resolve this, automatic abnormality detection systems are required to secure the required computing ability and to analyze the attacks. Hence, an efficient automated intrusion detection system using machine learning methodology is proposed in this research paper. Initially, the data are gathered from CSE-CIC-IDS 2018 and UNSW-NB15 datasets. The acquired data are pre-processed using Null value handling and Min-Max normalization. Null value handling is used to remove missing values and irrelevant parameters. Min-Max normalization adjusted the unnormalized data in the pre-processing stage. After pre-processing, the class imbalance problem is reduced by using the Advanced Synthetic Minority Oversampling Technique (ASmoT). ASmoT aims to balance the class and reduce imbalance class problems and overfitting issues. The next phase is feature extraction, which is performed by Modified Singular Value Decomposition (M-SvD). M-SvD extracts essential features such as basic features, content features and traffic features from the input. The extracted features are optimized by the Opposition-based Northern Goshawk Optimization algorithm (ONgO). These optimal features are able to produce optimal output. After feature selection, the different types of attacks are classified by a hybrid machine learning model called Mud Ring assisted multilayer support vector machine (M-MultiSVM) and finally, the hyperparameters are tuned by the Mud Ring optimization algorithm. Thus, the proposed M-MultiSVM model can efficiently detect intrusion in the network. The performance metrics show that the proposed system achieved 99.89 % accuracy by using the CSE-CIC-IDS 2018 dataset; also, the proposed system achieved 97.535 % accuracy by using the UNSW-NB15 dataset.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蛙蛙完成签到,获得积分10
1秒前
1秒前
故城完成签到 ,获得积分10
1秒前
xxfsx完成签到,获得积分0
1秒前
孤芳自赏IrisKing完成签到 ,获得积分10
2秒前
2秒前
YIDAN完成签到,获得积分10
2秒前
陈同学完成签到 ,获得积分10
3秒前
吴若雨完成签到 ,获得积分10
4秒前
吴谷杂粮完成签到 ,获得积分10
4秒前
memory完成签到,获得积分10
4秒前
大布发布了新的文献求助20
4秒前
Ther完成签到 ,获得积分10
4秒前
alan完成签到 ,获得积分0
4秒前
隐形曼青应助tdtk采纳,获得10
4秒前
哪儿都通完成签到,获得积分10
4秒前
浓浓完成签到 ,获得积分10
4秒前
6秒前
雨rain完成签到 ,获得积分10
7秒前
YIDAN发布了新的文献求助10
7秒前
笔至梦花完成签到 ,获得积分10
7秒前
8秒前
小阳阳5010完成签到 ,获得积分10
9秒前
9464完成签到 ,获得积分10
9秒前
9秒前
阔达静曼完成签到 ,获得积分10
10秒前
爱笑小笼包完成签到 ,获得积分10
10秒前
落寞飞烟完成签到,获得积分10
10秒前
田様应助黄小雨采纳,获得10
11秒前
提前退休完成签到 ,获得积分10
12秒前
766465完成签到 ,获得积分0
12秒前
青椒发布了新的文献求助10
12秒前
Dan发布了新的文献求助10
14秒前
啦啦啦啦啦完成签到 ,获得积分10
14秒前
YU完成签到 ,获得积分10
14秒前
14秒前
良月完成签到 ,获得积分10
14秒前
风趣的梦露完成签到 ,获得积分10
14秒前
14秒前
zzzrrr完成签到 ,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Treatise on Geochemistry 1500
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5515374
求助须知:如何正确求助?哪些是违规求助? 4608851
关于积分的说明 14513690
捐赠科研通 4545250
什么是DOI,文献DOI怎么找? 2490434
邀请新用户注册赠送积分活动 1472471
关于科研通互助平台的介绍 1444149

今日热心研友

注:热心度 = 本日应助数 + 本日被采纳获取积分÷10