M-MultiSVM: An efficient feature selection assisted network intrusion detection system using machine learning

计算机科学 入侵检测系统 特征选择 人工智能 规范化(社会学) 机器学习 数据挖掘 过度拟合 奇异值分解 过采样 人工神经网络 带宽(计算) 人类学 计算机网络 社会学
作者
Anil V. Turukmane,Ramkumar Devendiran
出处
期刊:Computers & Security [Elsevier]
卷期号:137: 103587-103587 被引量:21
标识
DOI:10.1016/j.cose.2023.103587
摘要

The intrusions are increasing daily, so there is a huge amount of privacy violations, financial loss, illegal transferring of information, etc. Various forms of intrusion occur in networks, such as menacing networks, computer resources and network information. Each type of intrusion focuses on specified tasks, whereas the hackers may focus on stealing confidential data, industrial secrets and personal information, which is then leaked to others for illegal gains. Due to the false detection of attacks in the security and changing environmental fields, limitations like data lagging on actual attacks and sustaining financial harms occur. To resolve this, automatic abnormality detection systems are required to secure the required computing ability and to analyze the attacks. Hence, an efficient automated intrusion detection system using machine learning methodology is proposed in this research paper. Initially, the data are gathered from CSE-CIC-IDS 2018 and UNSW-NB15 datasets. The acquired data are pre-processed using Null value handling and Min-Max normalization. Null value handling is used to remove missing values and irrelevant parameters. Min-Max normalization adjusted the unnormalized data in the pre-processing stage. After pre-processing, the class imbalance problem is reduced by using the Advanced Synthetic Minority Oversampling Technique (ASmoT). ASmoT aims to balance the class and reduce imbalance class problems and overfitting issues. The next phase is feature extraction, which is performed by Modified Singular Value Decomposition (M-SvD). M-SvD extracts essential features such as basic features, content features and traffic features from the input. The extracted features are optimized by the Opposition-based Northern Goshawk Optimization algorithm (ONgO). These optimal features are able to produce optimal output. After feature selection, the different types of attacks are classified by a hybrid machine learning model called Mud Ring assisted multilayer support vector machine (M-MultiSVM) and finally, the hyperparameters are tuned by the Mud Ring optimization algorithm. Thus, the proposed M-MultiSVM model can efficiently detect intrusion in the network. The performance metrics show that the proposed system achieved 99.89 % accuracy by using the CSE-CIC-IDS 2018 dataset; also, the proposed system achieved 97.535 % accuracy by using the UNSW-NB15 dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yxrose完成签到,获得积分10
6秒前
林好人完成签到 ,获得积分10
8秒前
盟主完成签到 ,获得积分10
9秒前
superspace完成签到 ,获得积分10
17秒前
ru完成签到 ,获得积分10
18秒前
yyyyxxxg完成签到,获得积分10
19秒前
量子星尘发布了新的文献求助10
20秒前
23秒前
yuntong完成签到 ,获得积分0
24秒前
赵一完成签到 ,获得积分10
30秒前
唐唐完成签到,获得积分10
30秒前
41秒前
luluyang完成签到 ,获得积分10
41秒前
量子星尘发布了新的文献求助10
42秒前
复杂的可乐完成签到 ,获得积分10
49秒前
科研通AI6应助科研通管家采纳,获得10
51秒前
布吉岛呀完成签到 ,获得积分10
56秒前
优雅含灵完成签到 ,获得积分10
56秒前
yi完成签到 ,获得积分10
58秒前
量子星尘发布了新的文献求助10
59秒前
海之恋心完成签到 ,获得积分10
1分钟前
科研通AI6应助背后的雪巧采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
李健的小迷弟应助thchiang采纳,获得10
1分钟前
欢呼的雨琴完成签到 ,获得积分10
1分钟前
SJW--666完成签到,获得积分0
1分钟前
木木完成签到,获得积分10
1分钟前
1分钟前
thchiang发布了新的文献求助10
1分钟前
迅速千愁完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
Nana完成签到 ,获得积分10
1分钟前
genius完成签到 ,获得积分10
1分钟前
1分钟前
thchiang完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
Aixia完成签到 ,获得积分10
2分钟前
2分钟前
小叶子完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418544
求助须知:如何正确求助?哪些是违规求助? 4534237
关于积分的说明 14143298
捐赠科研通 4450452
什么是DOI,文献DOI怎么找? 2441265
邀请新用户注册赠送积分活动 1432974
关于科研通互助平台的介绍 1410399