亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

M-MultiSVM: An efficient feature selection assisted network intrusion detection system using machine learning

计算机科学 入侵检测系统 特征选择 人工智能 规范化(社会学) 机器学习 数据挖掘 过度拟合 奇异值分解 过采样 人工神经网络 带宽(计算) 计算机网络 社会学 人类学
作者
Anil V. Turukmane,Ramkumar Devendiran
出处
期刊:Computers & Security [Elsevier BV]
卷期号:137: 103587-103587 被引量:21
标识
DOI:10.1016/j.cose.2023.103587
摘要

The intrusions are increasing daily, so there is a huge amount of privacy violations, financial loss, illegal transferring of information, etc. Various forms of intrusion occur in networks, such as menacing networks, computer resources and network information. Each type of intrusion focuses on specified tasks, whereas the hackers may focus on stealing confidential data, industrial secrets and personal information, which is then leaked to others for illegal gains. Due to the false detection of attacks in the security and changing environmental fields, limitations like data lagging on actual attacks and sustaining financial harms occur. To resolve this, automatic abnormality detection systems are required to secure the required computing ability and to analyze the attacks. Hence, an efficient automated intrusion detection system using machine learning methodology is proposed in this research paper. Initially, the data are gathered from CSE-CIC-IDS 2018 and UNSW-NB15 datasets. The acquired data are pre-processed using Null value handling and Min-Max normalization. Null value handling is used to remove missing values and irrelevant parameters. Min-Max normalization adjusted the unnormalized data in the pre-processing stage. After pre-processing, the class imbalance problem is reduced by using the Advanced Synthetic Minority Oversampling Technique (ASmoT). ASmoT aims to balance the class and reduce imbalance class problems and overfitting issues. The next phase is feature extraction, which is performed by Modified Singular Value Decomposition (M-SvD). M-SvD extracts essential features such as basic features, content features and traffic features from the input. The extracted features are optimized by the Opposition-based Northern Goshawk Optimization algorithm (ONgO). These optimal features are able to produce optimal output. After feature selection, the different types of attacks are classified by a hybrid machine learning model called Mud Ring assisted multilayer support vector machine (M-MultiSVM) and finally, the hyperparameters are tuned by the Mud Ring optimization algorithm. Thus, the proposed M-MultiSVM model can efficiently detect intrusion in the network. The performance metrics show that the proposed system achieved 99.89 % accuracy by using the CSE-CIC-IDS 2018 dataset; also, the proposed system achieved 97.535 % accuracy by using the UNSW-NB15 dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
Maple发布了新的文献求助10
3秒前
roy完成签到,获得积分10
14秒前
bkagyin应助hkxfg采纳,获得10
17秒前
27秒前
02发布了新的文献求助10
34秒前
运运完成签到 ,获得积分10
37秒前
Maple发布了新的文献求助10
44秒前
wzzznh完成签到 ,获得积分10
55秒前
Maple完成签到,获得积分10
59秒前
端庄亦巧完成签到 ,获得积分10
1分钟前
科研通AI5应助jacs111采纳,获得10
1分钟前
CodeCraft应助罗舒采纳,获得10
1分钟前
1分钟前
1分钟前
jacs111发布了新的文献求助10
1分钟前
Zjc0913完成签到 ,获得积分10
1分钟前
libob完成签到,获得积分10
1分钟前
Aaaaa发布了新的文献求助10
1分钟前
jacs111完成签到,获得积分10
1分钟前
xmqaq完成签到,获得积分10
1分钟前
Orange应助科研通管家采纳,获得10
1分钟前
领导范儿应助科研通管家采纳,获得10
1分钟前
Aaaaa完成签到,获得积分20
1分钟前
林利芳完成签到 ,获得积分0
1分钟前
1分钟前
流萤发布了新的文献求助30
1分钟前
hwen1998完成签到 ,获得积分10
1分钟前
鱼羊明完成签到 ,获得积分10
1分钟前
tufei完成签到,获得积分10
1分钟前
暮冬完成签到 ,获得积分10
1分钟前
流萤完成签到,获得积分10
1分钟前
瑞瑞刘完成签到 ,获得积分10
2分钟前
土豪的摩托完成签到 ,获得积分10
2分钟前
z610938841完成签到,获得积分10
2分钟前
雨yu完成签到 ,获得积分10
2分钟前
张晓祁完成签到,获得积分10
2分钟前
yueying完成签到,获得积分10
2分钟前
2分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965642
求助须知:如何正确求助?哪些是违规求助? 3510896
关于积分的说明 11155529
捐赠科研通 3245353
什么是DOI,文献DOI怎么找? 1792856
邀请新用户注册赠送积分活动 874161
科研通“疑难数据库(出版商)”最低求助积分说明 804214