清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

M-MultiSVM: An efficient feature selection assisted network intrusion detection system using machine learning

计算机科学 入侵检测系统 特征选择 人工智能 规范化(社会学) 机器学习 数据挖掘 过度拟合 奇异值分解 过采样 人工神经网络 带宽(计算) 人类学 计算机网络 社会学
作者
Anil V. Turukmane,Ramkumar Devendiran
出处
期刊:Computers & Security [Elsevier]
卷期号:137: 103587-103587 被引量:21
标识
DOI:10.1016/j.cose.2023.103587
摘要

The intrusions are increasing daily, so there is a huge amount of privacy violations, financial loss, illegal transferring of information, etc. Various forms of intrusion occur in networks, such as menacing networks, computer resources and network information. Each type of intrusion focuses on specified tasks, whereas the hackers may focus on stealing confidential data, industrial secrets and personal information, which is then leaked to others for illegal gains. Due to the false detection of attacks in the security and changing environmental fields, limitations like data lagging on actual attacks and sustaining financial harms occur. To resolve this, automatic abnormality detection systems are required to secure the required computing ability and to analyze the attacks. Hence, an efficient automated intrusion detection system using machine learning methodology is proposed in this research paper. Initially, the data are gathered from CSE-CIC-IDS 2018 and UNSW-NB15 datasets. The acquired data are pre-processed using Null value handling and Min-Max normalization. Null value handling is used to remove missing values and irrelevant parameters. Min-Max normalization adjusted the unnormalized data in the pre-processing stage. After pre-processing, the class imbalance problem is reduced by using the Advanced Synthetic Minority Oversampling Technique (ASmoT). ASmoT aims to balance the class and reduce imbalance class problems and overfitting issues. The next phase is feature extraction, which is performed by Modified Singular Value Decomposition (M-SvD). M-SvD extracts essential features such as basic features, content features and traffic features from the input. The extracted features are optimized by the Opposition-based Northern Goshawk Optimization algorithm (ONgO). These optimal features are able to produce optimal output. After feature selection, the different types of attacks are classified by a hybrid machine learning model called Mud Ring assisted multilayer support vector machine (M-MultiSVM) and finally, the hyperparameters are tuned by the Mud Ring optimization algorithm. Thus, the proposed M-MultiSVM model can efficiently detect intrusion in the network. The performance metrics show that the proposed system achieved 99.89 % accuracy by using the CSE-CIC-IDS 2018 dataset; also, the proposed system achieved 97.535 % accuracy by using the UNSW-NB15 dataset.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
coding完成签到,获得积分10
4秒前
植物代谢完成签到,获得积分10
5秒前
植物代谢发布了新的文献求助10
8秒前
elisa828发布了新的文献求助10
9秒前
22秒前
七月星河完成签到 ,获得积分10
22秒前
围城完成签到 ,获得积分10
40秒前
naczx完成签到,获得积分0
57秒前
1分钟前
Jerry发布了新的文献求助10
1分钟前
linhuafeng完成签到 ,获得积分10
1分钟前
Jerry完成签到,获得积分10
1分钟前
打打应助熊建采纳,获得10
1分钟前
在水一方应助熊建采纳,获得10
1分钟前
sx666完成签到 ,获得积分10
1分钟前
平凡世界完成签到 ,获得积分10
1分钟前
zw完成签到,获得积分10
1分钟前
贾舒涵完成签到,获得积分10
1分钟前
愉快的丹彤完成签到 ,获得积分10
1分钟前
1分钟前
柯彦完成签到 ,获得积分10
1分钟前
无极微光应助白华苍松采纳,获得20
1分钟前
红茸茸羊完成签到 ,获得积分10
2分钟前
zhangwenjie完成签到 ,获得积分10
2分钟前
sanmochuan发布了新的文献求助10
2分钟前
火鸡味锅巴完成签到 ,获得积分10
2分钟前
吉祥高趙完成签到 ,获得积分10
2分钟前
蓝意完成签到,获得积分0
2分钟前
3分钟前
cwanglh完成签到 ,获得积分10
3分钟前
3分钟前
sanmochuan完成签到,获得积分10
3分钟前
陈A完成签到 ,获得积分10
3分钟前
3分钟前
kk发布了新的文献求助10
3分钟前
余慵慵完成签到 ,获得积分10
3分钟前
慕青应助无语的音响采纳,获得10
3分钟前
传奇3应助kk采纳,获得10
3分钟前
一鸣大人完成签到,获得积分10
3分钟前
xu完成签到 ,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5555113
求助须知:如何正确求助?哪些是违规求助? 4639649
关于积分的说明 14656529
捐赠科研通 4581628
什么是DOI,文献DOI怎么找? 2512901
邀请新用户注册赠送积分活动 1487593
关于科研通互助平台的介绍 1458621