已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

M-MultiSVM: An efficient feature selection assisted network intrusion detection system using machine learning

计算机科学 入侵检测系统 特征选择 人工智能 规范化(社会学) 机器学习 数据挖掘 过度拟合 奇异值分解 过采样 人工神经网络 带宽(计算) 人类学 计算机网络 社会学
作者
Anil V. Turukmane,Ramkumar Devendiran
出处
期刊:Computers & Security [Elsevier]
卷期号:137: 103587-103587 被引量:21
标识
DOI:10.1016/j.cose.2023.103587
摘要

The intrusions are increasing daily, so there is a huge amount of privacy violations, financial loss, illegal transferring of information, etc. Various forms of intrusion occur in networks, such as menacing networks, computer resources and network information. Each type of intrusion focuses on specified tasks, whereas the hackers may focus on stealing confidential data, industrial secrets and personal information, which is then leaked to others for illegal gains. Due to the false detection of attacks in the security and changing environmental fields, limitations like data lagging on actual attacks and sustaining financial harms occur. To resolve this, automatic abnormality detection systems are required to secure the required computing ability and to analyze the attacks. Hence, an efficient automated intrusion detection system using machine learning methodology is proposed in this research paper. Initially, the data are gathered from CSE-CIC-IDS 2018 and UNSW-NB15 datasets. The acquired data are pre-processed using Null value handling and Min-Max normalization. Null value handling is used to remove missing values and irrelevant parameters. Min-Max normalization adjusted the unnormalized data in the pre-processing stage. After pre-processing, the class imbalance problem is reduced by using the Advanced Synthetic Minority Oversampling Technique (ASmoT). ASmoT aims to balance the class and reduce imbalance class problems and overfitting issues. The next phase is feature extraction, which is performed by Modified Singular Value Decomposition (M-SvD). M-SvD extracts essential features such as basic features, content features and traffic features from the input. The extracted features are optimized by the Opposition-based Northern Goshawk Optimization algorithm (ONgO). These optimal features are able to produce optimal output. After feature selection, the different types of attacks are classified by a hybrid machine learning model called Mud Ring assisted multilayer support vector machine (M-MultiSVM) and finally, the hyperparameters are tuned by the Mud Ring optimization algorithm. Thus, the proposed M-MultiSVM model can efficiently detect intrusion in the network. The performance metrics show that the proposed system achieved 99.89 % accuracy by using the CSE-CIC-IDS 2018 dataset; also, the proposed system achieved 97.535 % accuracy by using the UNSW-NB15 dataset.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yesyes完成签到,获得积分10
1秒前
LU完成签到,获得积分10
3秒前
3秒前
虎正凯完成签到 ,获得积分10
5秒前
追寻夏烟完成签到 ,获得积分10
6秒前
火星上的山河完成签到 ,获得积分10
8秒前
yoga完成签到 ,获得积分10
9秒前
追寻哲瀚完成签到 ,获得积分0
9秒前
11秒前
13秒前
LU发布了新的文献求助10
15秒前
15秒前
酷波er应助gwff采纳,获得10
16秒前
123456发布了新的文献求助10
16秒前
16秒前
22完成签到 ,获得积分10
18秒前
19秒前
20秒前
23秒前
111231发布了新的文献求助10
23秒前
袖贤发布了新的文献求助10
24秒前
shjyang完成签到,获得积分0
24秒前
24秒前
guo完成签到 ,获得积分10
26秒前
29秒前
31秒前
TianxingLiu完成签到,获得积分10
32秒前
39秒前
七七完成签到 ,获得积分10
40秒前
zxm1997完成签到,获得积分20
41秒前
41秒前
44秒前
zxm1997发布了新的文献求助10
45秒前
彭于晏应助科研通管家采纳,获得10
46秒前
嘿嘿应助科研通管家采纳,获得10
46秒前
慕青应助科研通管家采纳,获得30
46秒前
英姑应助科研通管家采纳,获得10
46秒前
嘿嘿应助科研通管家采纳,获得10
46秒前
科研通AI6应助科研通管家采纳,获得10
46秒前
cciocio应助科研通管家采纳,获得10
47秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
ACOG Practice Bulletin: Polycystic Ovary Syndrome 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603009
求助须知:如何正确求助?哪些是违规求助? 4688187
关于积分的说明 14852639
捐赠科研通 4686850
什么是DOI,文献DOI怎么找? 2540379
邀请新用户注册赠送积分活动 1506947
关于科研通互助平台的介绍 1471495