Integrated photonic molecule Brillouin laser with a high-power sub-100-mHz fundamental linewidth

激光线宽 光学 布里渊散射 材料科学 激光器 光子学 光电子学 物理
作者
Kaikai Liu,Jiawei Wang,Nitesh Chauhan,Mark Harrington,Karl D. Nelson,Daniel J. Blumenthal
出处
期刊:Optics Letters [Optica Publishing Group]
卷期号:49 (1): 45-45 被引量:14
标识
DOI:10.1364/ol.503126
摘要

Photonic integrated lasers with an ultra-low fundamental linewidth and a high output power are important for precision atomic and quantum applications, high-capacity communications, and fiber sensing, yet wafer-scale solutions have remained elusive. Here we report an integrated stimulated Brillouin laser (SBL), based on a photonic molecule coupled resonator design, that achieves a sub-100-mHz fundamental linewidth with greater than 10-mW output power in the C band, fabricated on a 200-mm silicon nitride (Si3N4) CMOS-foundry compatible wafer-scale platform. The photonic molecule design is used to suppress the second-order Stokes (S2) emission, allowing the primary lasing mode to increase with the pump power without phase noise feedback from higher Stokes orders. The nested waveguide resonators have a 184 million intrinsic and 92 million loaded Q, over an order of magnitude improvement over prior photonic molecules, enabling precision resonance splitting of 198 MHz at the S2 frequency. We demonstrate S2-suppressed single-mode SBL with a minimum fundamental linewidth of 71±18 mHz, corresponding to a 23±6-mHz2/Hz white-frequency-noise floor, over an order of magnitude lower than prior integrated SBLs, with an ∼11-mW output power and 2.3-mW threshold power. The frequency noise reaches the resonator-intrinsic thermo-refractive noise from 2-kHz to 1-MHz offset. The laser phase noise reaches -155 dBc/Hz at 10-MHz offset. The performance of this chip-scale SBL shows promise not only to improve the reliability and reduce size and cost but also to enable new precision experiments that require the high-speed manipulation, control, and interrogation of atoms and qubits. Realization in the silicon nitride ultra-low loss platform is adaptable to a wide range of wavelengths from the visible to infrared and enables integration with other components for systems-on-chip solutions for a wide range of precision scientific and engineering applications including quantum sensing, gravitometers, atom interferometers, precision metrology, optical atomic clocks, and ultra-low noise microwave generation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
红岸发布了新的文献求助10
刚刚
xzw完成签到,获得积分10
刚刚
科目三应助moon123采纳,获得10
1秒前
科目三应助雪蛤采纳,获得10
2秒前
吴彦祖发布了新的文献求助10
2秒前
852应助YFW采纳,获得10
4秒前
5秒前
yookia应助科研通管家采纳,获得10
5秒前
爆米花应助科研通管家采纳,获得10
5秒前
无私的芹应助科研通管家采纳,获得10
6秒前
无私的芹应助科研通管家采纳,获得10
6秒前
华仔应助科研通管家采纳,获得10
6秒前
李健应助科研通管家采纳,获得10
6秒前
无私的芹应助科研通管家采纳,获得10
6秒前
领导范儿应助科研通管家采纳,获得10
6秒前
Jasper应助科研通管家采纳,获得10
6秒前
yznfly应助科研通管家采纳,获得30
6秒前
无私的芹应助科研通管家采纳,获得10
6秒前
无私的芹应助科研通管家采纳,获得10
6秒前
完美世界应助科研通管家采纳,获得10
6秒前
无情向薇应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
柯一一应助科研通管家采纳,获得10
6秒前
无私的芹应助科研通管家采纳,获得10
6秒前
完美世界应助科研通管家采纳,获得10
7秒前
SYLH应助科研通管家采纳,获得10
7秒前
英姑应助温酒随行采纳,获得30
7秒前
星辰大海应助科研通管家采纳,获得10
7秒前
领导范儿应助科研通管家采纳,获得50
7秒前
7秒前
共享精神应助科研通管家采纳,获得10
7秒前
思源应助科研通管家采纳,获得10
7秒前
Lucas应助科研通管家采纳,获得10
7秒前
Hello应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
fancynancy完成签到,获得积分10
7秒前
金金肖完成签到,获得积分10
8秒前
搜集达人应助吴彦祖采纳,获得10
9秒前
9秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959533
求助须知:如何正确求助?哪些是违规求助? 3505776
关于积分的说明 11126048
捐赠科研通 3237690
什么是DOI,文献DOI怎么找? 1789252
邀请新用户注册赠送积分活动 871623
科研通“疑难数据库(出版商)”最低求助积分说明 802916