Neural network-based variable stiffness impedance control for internal/external forces tracking of dual-arm manipulators under uncertainties

控制理论(社会学) 控制器(灌溉) 刚度 阻抗控制 人工神经网络 跟踪(教育) 理论(学习稳定性) Lyapunov稳定性 计算机科学 工程类 人工智能 机器人 控制(管理) 结构工程 生物 农学 机器学习 教育学 心理学
作者
Yufei Zhou,Zhongcan Li,Yanhui Li,Mingchao Zhu
出处
期刊:Control Engineering Practice [Elsevier]
卷期号:141: 105714-105714
标识
DOI:10.1016/j.conengprac.2023.105714
摘要

The desired interaction between manipulators, objects, and environments has resulted in the internal/external force control for dual-arm manipulators being in increasing demand. Consequently, this study focused on the internal/external force tracking for dual-arm manipulator systems under external disturbances, geometries, and stiffness uncertainties which continuously lead to unsatisfactory internal force tracking. The proposed scheme is based on a two-level adaptive impedance control scheme, where the stiffness coefficient is adjusted to adapt to uncalibrated objects. An object-level hybrid impedance controller was used to regulate the external disturbance to produce a compliant response. A manipulator-level neural network-based variable stiffness impedance controller (NNVSIC) was proposed to regulate the internal force under various uncertainties. Additionally, an adaptive wavelet neural network was designed to compensate for the geometric estimation errors of the object. The variable stiffness coefficient could automatically adapt to an unknown object during the cooperation process. One advantage of the proposed method is that no prior knowledge was required. The same controller parameters could be adapted to various objects. The asymptotic stability of the proposed NNVSIC was proven via Lyapunov stability analysis. A series of experiments were conducted using two self-developed nine-degrees-of-freedom redundant manipulators. Furthermore, hard and soft objects of various geometries and stiffnesses were used to verify the effectiveness of the algorithm. The experimental results demonstrated the efficiency and superiority of the proposed controller through performance comparison with various algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助曹志毅采纳,获得10
2秒前
今天不想学习完成签到,获得积分10
3秒前
3秒前
运敬完成签到 ,获得积分10
4秒前
4秒前
桐桐应助傻傻的凌寒采纳,获得10
5秒前
hammer完成签到,获得积分10
5秒前
大方博涛完成签到,获得积分10
5秒前
BingoTang完成签到,获得积分10
5秒前
橘子石榴应助morena采纳,获得10
6秒前
Z777完成签到,获得积分10
6秒前
熊11发布了新的文献求助10
7秒前
Cary完成签到,获得积分10
8秒前
十一发布了新的文献求助10
9秒前
9秒前
斯文败类应助123采纳,获得10
10秒前
凌云发布了新的文献求助10
11秒前
12秒前
IBMffff应助swu采纳,获得10
13秒前
勤恳孤云完成签到,获得积分10
13秒前
brave关注了科研通微信公众号
13秒前
大模型应助严美娜采纳,获得10
13秒前
15秒前
15秒前
曹志毅发布了新的文献求助10
15秒前
小二郎应助熊11采纳,获得10
16秒前
18秒前
nicai发布了新的文献求助10
20秒前
20秒前
花椒泡茶完成签到,获得积分10
20秒前
21秒前
21秒前
蓝胖子应助赫连又蓝采纳,获得30
21秒前
MQueen完成签到,获得积分10
22秒前
xunmin完成签到,获得积分10
22秒前
打打应助江江采纳,获得30
24秒前
25秒前
碧蓝幻灵完成签到,获得积分10
25秒前
7t1n9发布了新的文献求助10
25秒前
CipherSage应助科研通管家采纳,获得10
25秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3153422
求助须知:如何正确求助?哪些是违规求助? 2804660
关于积分的说明 7860714
捐赠科研通 2462621
什么是DOI,文献DOI怎么找? 1310839
科研通“疑难数据库(出版商)”最低求助积分说明 629400
版权声明 601794