Neural network-based variable stiffness impedance control for internal/external forces tracking of dual-arm manipulators under uncertainties

控制理论(社会学) 控制器(灌溉) 刚度 阻抗控制 人工神经网络 跟踪(教育) 理论(学习稳定性) Lyapunov稳定性 计算机科学 工程类 人工智能 机器人 控制(管理) 结构工程 心理学 教育学 机器学习 农学 生物
作者
Yufei Zhou,Zhongcan Li,Yanhui Li,Mingchao Zhu
出处
期刊:Control Engineering Practice [Elsevier]
卷期号:141: 105714-105714
标识
DOI:10.1016/j.conengprac.2023.105714
摘要

The desired interaction between manipulators, objects, and environments has resulted in the internal/external force control for dual-arm manipulators being in increasing demand. Consequently, this study focused on the internal/external force tracking for dual-arm manipulator systems under external disturbances, geometries, and stiffness uncertainties which continuously lead to unsatisfactory internal force tracking. The proposed scheme is based on a two-level adaptive impedance control scheme, where the stiffness coefficient is adjusted to adapt to uncalibrated objects. An object-level hybrid impedance controller was used to regulate the external disturbance to produce a compliant response. A manipulator-level neural network-based variable stiffness impedance controller (NNVSIC) was proposed to regulate the internal force under various uncertainties. Additionally, an adaptive wavelet neural network was designed to compensate for the geometric estimation errors of the object. The variable stiffness coefficient could automatically adapt to an unknown object during the cooperation process. One advantage of the proposed method is that no prior knowledge was required. The same controller parameters could be adapted to various objects. The asymptotic stability of the proposed NNVSIC was proven via Lyapunov stability analysis. A series of experiments were conducted using two self-developed nine-degrees-of-freedom redundant manipulators. Furthermore, hard and soft objects of various geometries and stiffnesses were used to verify the effectiveness of the algorithm. The experimental results demonstrated the efficiency and superiority of the proposed controller through performance comparison with various algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
2秒前
DJ发布了新的文献求助10
2秒前
千影完成签到,获得积分10
2秒前
generaliu发布了新的文献求助10
2秒前
愉快的乾完成签到,获得积分10
3秒前
3秒前
石头完成签到,获得积分10
3秒前
4秒前
4秒前
共享精神应助黄臻采纳,获得10
5秒前
田様应助lingling采纳,获得10
5秒前
彭于晏应助李生龙采纳,获得30
5秒前
showmaker完成签到,获得积分10
6秒前
7秒前
谦让笑旋发布了新的文献求助10
7秒前
小强快跑发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
zying完成签到,获得积分20
8秒前
量子星尘发布了新的文献求助10
9秒前
zouhao发布了新的文献求助10
9秒前
三余完成签到,获得积分10
10秒前
10秒前
zhouxiaolin完成签到,获得积分10
10秒前
ARIA发布了新的文献求助10
10秒前
10秒前
xx完成签到,获得积分10
11秒前
11秒前
嗯是我完成签到,获得积分10
11秒前
科科完成签到,获得积分10
11秒前
传奇3应助浅海111采纳,获得10
12秒前
我是老大应助嘞是举仔采纳,获得10
12秒前
luckyWZJ发布了新的文献求助10
12秒前
12秒前
12秒前
Bloomy发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5641841
求助须知:如何正确求助?哪些是违规求助? 4757370
关于积分的说明 15014933
捐赠科研通 4800251
什么是DOI,文献DOI怎么找? 2565964
邀请新用户注册赠送积分活动 1524113
关于科研通互助平台的介绍 1483776