Method to predict alloy yield based on multiple raw material conditions and a PSO-LSTM network

铁合金 原材料 炼钢 粒子群优化 材料科学 合金 产量(工程) 工艺工程 冶金 计算机科学 机械工程 工程类 算法 化学 有机化学 渔业 生物
作者
Ruixuan Zheng,Yan-ping Bao,Lihua Zhao,Lidong Xing
出处
期刊:Journal of materials research and technology [Elsevier]
卷期号:27: 3310-3322 被引量:7
标识
DOI:10.1016/j.jmrt.2023.10.046
摘要

The production of ferroalloys accounts for a large proportion of the total energy consumption of the steelmaking industry. Accurately predicting alloy element yields is the key to reducing alloy waste, but there are significant differences in alloy yield under different conditions using ferroalloy raw materials during steelmaking. Therefore, this paper proposes a multi-model alloy element yield prediction method based on a particle swarm optimization (PSO) hyperparameter-optimized long short-term memory (LSTM) network and raw material condition classification. The accuracy of the PSO-LSTM prediction model was verified through simulations and was significantly higher than that of other network models when using the same raw material conditions. The average absolute error of predictions using raw materials with a low drum index was 0.4485, and it was 0.6162 under a high drum index, which was significantly lower than that (0.7077) under the condition without classification. This demonstrates the rationality of classifying working conditions according to the raw material conditions of ferroalloys. In addition, this paper combines the prediction model with a linear programming algorithm to develop a ferroalloy operating system and uses it in a steel plant to guide workers to complete an alloying operation. After four months of industrial testing, the internal control rate of finished steel composition increased from 91–94% to 95–98%. According to statistical analysis, the optimized HRB400E threaded steel consumed 1.23 kg less silicon-manganese per ton of steel, reduced the cost of steel alloy per ton by 8.6 yuan, and significantly reduced the waste of ferroalloys during steelmaking.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MIZU应助钟梓袄采纳,获得10
刚刚
科研通AI6.1应助钟梓袄采纳,获得10
刚刚
完美世界应助钟梓袄采纳,获得10
刚刚
所所应助钟梓袄采纳,获得10
1秒前
科研通AI6.1应助钟梓袄采纳,获得10
1秒前
1秒前
岑翠丝完成签到,获得积分10
1秒前
Rita发布了新的文献求助10
2秒前
2秒前
eurhfe发布了新的文献求助10
3秒前
4秒前
xinmindeng完成签到,获得积分10
5秒前
猪猪hero发布了新的文献求助10
6秒前
菠萝发布了新的文献求助10
7秒前
ye发布了新的文献求助10
7秒前
xinyi完成签到,获得积分10
7秒前
852应助冷酷的海雪采纳,获得30
7秒前
10秒前
yuchen12a发布了新的文献求助10
10秒前
sanapri完成签到,获得积分10
11秒前
11秒前
11秒前
星辰大海应助LIZ采纳,获得30
12秒前
完美世界应助肖鹏采纳,获得10
12秒前
共享精神应助陈曦读研版采纳,获得10
13秒前
猪猪hero发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
15秒前
平常书萱发布了新的文献求助10
16秒前
Orange应助无敌大忽悠采纳,获得10
16秒前
舒适代丝完成签到 ,获得积分10
18秒前
野稚完成签到,获得积分20
18秒前
18秒前
李娇完成签到,获得积分10
20秒前
思源应助苏酒采纳,获得30
20秒前
20秒前
21秒前
21秒前
22秒前
22秒前
量子星尘发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5777921
求助须知:如何正确求助?哪些是违规求助? 5636658
关于积分的说明 15447224
捐赠科研通 4909858
什么是DOI,文献DOI怎么找? 2641972
邀请新用户注册赠送积分活动 1589855
关于科研通互助平台的介绍 1544362