亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Method to predict alloy yield based on multiple raw material conditions and a PSO-LSTM network

铁合金 原材料 炼钢 粒子群优化 材料科学 合金 产量(工程) 工艺工程 冶金 计算机科学 机械工程 工程类 算法 化学 有机化学 渔业 生物
作者
Ruixuan Zheng,Yan-ping Bao,Lihua Zhao,Lidong Xing
出处
期刊:Journal of materials research and technology [Elsevier]
卷期号:27: 3310-3322 被引量:7
标识
DOI:10.1016/j.jmrt.2023.10.046
摘要

The production of ferroalloys accounts for a large proportion of the total energy consumption of the steelmaking industry. Accurately predicting alloy element yields is the key to reducing alloy waste, but there are significant differences in alloy yield under different conditions using ferroalloy raw materials during steelmaking. Therefore, this paper proposes a multi-model alloy element yield prediction method based on a particle swarm optimization (PSO) hyperparameter-optimized long short-term memory (LSTM) network and raw material condition classification. The accuracy of the PSO-LSTM prediction model was verified through simulations and was significantly higher than that of other network models when using the same raw material conditions. The average absolute error of predictions using raw materials with a low drum index was 0.4485, and it was 0.6162 under a high drum index, which was significantly lower than that (0.7077) under the condition without classification. This demonstrates the rationality of classifying working conditions according to the raw material conditions of ferroalloys. In addition, this paper combines the prediction model with a linear programming algorithm to develop a ferroalloy operating system and uses it in a steel plant to guide workers to complete an alloying operation. After four months of industrial testing, the internal control rate of finished steel composition increased from 91–94% to 95–98%. According to statistical analysis, the optimized HRB400E threaded steel consumed 1.23 kg less silicon-manganese per ton of steel, reduced the cost of steel alloy per ton by 8.6 yuan, and significantly reduced the waste of ferroalloys during steelmaking.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yi完成签到 ,获得积分10
7秒前
一只大嵩鼠完成签到 ,获得积分10
29秒前
32秒前
吃橘子吗完成签到 ,获得积分10
32秒前
anders完成签到 ,获得积分10
52秒前
Ricardo完成签到 ,获得积分10
54秒前
战战兢兢的失眠完成签到 ,获得积分10
1分钟前
1分钟前
翻翻发布了新的文献求助10
1分钟前
1分钟前
1分钟前
lyw发布了新的文献求助10
1分钟前
1分钟前
翻翻完成签到,获得积分10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
潮鸣完成签到 ,获得积分10
2分钟前
Li发布了新的文献求助10
2分钟前
2分钟前
2分钟前
巫马百招完成签到,获得积分10
2分钟前
lyw发布了新的文献求助10
2分钟前
wanci应助Fortune采纳,获得10
2分钟前
fossick2010完成签到 ,获得积分10
2分钟前
Penny完成签到,获得积分10
3分钟前
3分钟前
Penny发布了新的文献求助10
3分钟前
andrele发布了新的文献求助50
3分钟前
Fortune发布了新的文献求助10
3分钟前
颜安完成签到,获得积分20
3分钟前
张张完成签到 ,获得积分10
3分钟前
3分钟前
Fortune完成签到,获得积分10
3分钟前
Vincent发布了新的文献求助10
3分钟前
爆米花应助lzmcsp采纳,获得10
3分钟前
3分钟前
BowieHuang应助科研通管家采纳,获得10
3分钟前
李健应助科研通管家采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788513
求助须知:如何正确求助?哪些是违规求助? 5708718
关于积分的说明 15473598
捐赠科研通 4916529
什么是DOI,文献DOI怎么找? 2646443
邀请新用户注册赠送积分活动 1594106
关于科研通互助平台的介绍 1548507