Method to predict alloy yield based on multiple raw material conditions and a PSO-LSTM network

铁合金 原材料 炼钢 粒子群优化 材料科学 合金 产量(工程) 工艺工程 冶金 计算机科学 机械工程 工程类 算法 化学 有机化学 渔业 生物
作者
Ruixuan Zheng,Yan-ping Bao,Lihua Zhao,Lidong Xing
出处
期刊:Journal of materials research and technology [Elsevier]
卷期号:27: 3310-3322 被引量:7
标识
DOI:10.1016/j.jmrt.2023.10.046
摘要

The production of ferroalloys accounts for a large proportion of the total energy consumption of the steelmaking industry. Accurately predicting alloy element yields is the key to reducing alloy waste, but there are significant differences in alloy yield under different conditions using ferroalloy raw materials during steelmaking. Therefore, this paper proposes a multi-model alloy element yield prediction method based on a particle swarm optimization (PSO) hyperparameter-optimized long short-term memory (LSTM) network and raw material condition classification. The accuracy of the PSO-LSTM prediction model was verified through simulations and was significantly higher than that of other network models when using the same raw material conditions. The average absolute error of predictions using raw materials with a low drum index was 0.4485, and it was 0.6162 under a high drum index, which was significantly lower than that (0.7077) under the condition without classification. This demonstrates the rationality of classifying working conditions according to the raw material conditions of ferroalloys. In addition, this paper combines the prediction model with a linear programming algorithm to develop a ferroalloy operating system and uses it in a steel plant to guide workers to complete an alloying operation. After four months of industrial testing, the internal control rate of finished steel composition increased from 91–94% to 95–98%. According to statistical analysis, the optimized HRB400E threaded steel consumed 1.23 kg less silicon-manganese per ton of steel, reduced the cost of steel alloy per ton by 8.6 yuan, and significantly reduced the waste of ferroalloys during steelmaking.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
王明磊完成签到 ,获得积分10
2秒前
领导范儿应助别说话采纳,获得10
2秒前
3秒前
25上岸完成签到,获得积分10
3秒前
元谷雪发布了新的文献求助10
4秒前
4秒前
王松桐完成签到,获得积分10
4秒前
Fliu完成签到,获得积分10
5秒前
5秒前
5秒前
77发布了新的文献求助10
5秒前
Nin完成签到,获得积分10
5秒前
ZZ发布了新的文献求助10
5秒前
zy发布了新的文献求助10
6秒前
只强完成签到,获得积分10
6秒前
研友_VZG7GZ应助keke采纳,获得10
6秒前
爱吃果冻发布了新的文献求助10
6秒前
7秒前
Orange应助梅雨季来信采纳,获得10
7秒前
元神发布了新的文献求助10
7秒前
科勒基侈发布了新的文献求助10
7秒前
9秒前
jewel9发布了新的文献求助10
9秒前
南桥发布了新的文献求助10
10秒前
嘞是举仔应助无辜从阳采纳,获得30
10秒前
不明完成签到 ,获得积分10
11秒前
凡凡发布了新的文献求助10
11秒前
12秒前
小白完成签到,获得积分10
12秒前
14秒前
元谷雪发布了新的文献求助10
15秒前
香蕉觅云应助77采纳,获得10
16秒前
赘婿应助阿正嗖啪采纳,获得10
16秒前
16秒前
慕青应助28551采纳,获得10
17秒前
CipherSage应助俏皮的吐司采纳,获得10
17秒前
18秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695408
求助须知:如何正确求助?哪些是违规求助? 5101761
关于积分的说明 15216105
捐赠科研通 4851704
什么是DOI,文献DOI怎么找? 2602676
邀请新用户注册赠送积分活动 1554320
关于科研通互助平台的介绍 1512360