已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Method to predict alloy yield based on multiple raw material conditions and a PSO-LSTM network

铁合金 原材料 炼钢 粒子群优化 材料科学 合金 产量(工程) 工艺工程 冶金 计算机科学 机械工程 工程类 算法 化学 有机化学 渔业 生物
作者
Ruixuan Zheng,Yan-ping Bao,Lihua Zhao,Lidong Xing
出处
期刊:Journal of materials research and technology [Elsevier BV]
卷期号:27: 3310-3322 被引量:7
标识
DOI:10.1016/j.jmrt.2023.10.046
摘要

The production of ferroalloys accounts for a large proportion of the total energy consumption of the steelmaking industry. Accurately predicting alloy element yields is the key to reducing alloy waste, but there are significant differences in alloy yield under different conditions using ferroalloy raw materials during steelmaking. Therefore, this paper proposes a multi-model alloy element yield prediction method based on a particle swarm optimization (PSO) hyperparameter-optimized long short-term memory (LSTM) network and raw material condition classification. The accuracy of the PSO-LSTM prediction model was verified through simulations and was significantly higher than that of other network models when using the same raw material conditions. The average absolute error of predictions using raw materials with a low drum index was 0.4485, and it was 0.6162 under a high drum index, which was significantly lower than that (0.7077) under the condition without classification. This demonstrates the rationality of classifying working conditions according to the raw material conditions of ferroalloys. In addition, this paper combines the prediction model with a linear programming algorithm to develop a ferroalloy operating system and uses it in a steel plant to guide workers to complete an alloying operation. After four months of industrial testing, the internal control rate of finished steel composition increased from 91–94% to 95–98%. According to statistical analysis, the optimized HRB400E threaded steel consumed 1.23 kg less silicon-manganese per ton of steel, reduced the cost of steel alloy per ton by 8.6 yuan, and significantly reduced the waste of ferroalloys during steelmaking.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
domingo发布了新的文献求助10
2秒前
寒冷哈密瓜完成签到 ,获得积分0
4秒前
AAA房地产小王完成签到,获得积分10
5秒前
ceeray23发布了新的文献求助20
7秒前
mmyhn完成签到,获得积分10
8秒前
wanci应助domingo采纳,获得20
14秒前
14秒前
qqweisiweiqq完成签到,获得积分10
15秒前
张萌完成签到 ,获得积分10
16秒前
NexusExplorer应助123456采纳,获得10
19秒前
刺猬发布了新的文献求助10
20秒前
001az发布了新的文献求助20
21秒前
Trtr7985发布了新的文献求助10
23秒前
wxh完成签到,获得积分20
24秒前
momo应助CC采纳,获得10
25秒前
Cupid完成签到,获得积分10
31秒前
32秒前
32秒前
刮刮粉儿关注了科研通微信公众号
33秒前
小刘发布了新的文献求助10
33秒前
001az完成签到,获得积分10
35秒前
ding应助虎虎虎采纳,获得10
38秒前
小乐完成签到,获得积分10
38秒前
44秒前
虎虎虎发布了新的文献求助10
47秒前
天天开心完成签到 ,获得积分10
49秒前
虎虎虎完成签到,获得积分10
50秒前
可爱的函函应助taoatao采纳,获得10
54秒前
55秒前
乐乱完成签到 ,获得积分10
56秒前
刮刮粉儿发布了新的文献求助10
1分钟前
1分钟前
青树柠檬完成签到 ,获得积分10
1分钟前
才富郭完成签到 ,获得积分10
1分钟前
wkjfh应助AAA房地产小王采纳,获得10
1分钟前
1分钟前
taoatao发布了新的文献求助10
1分钟前
隐形的谷槐完成签到 ,获得积分10
1分钟前
Dr.Who发布了新的文献求助10
1分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990008
求助须知:如何正确求助?哪些是违规求助? 3532034
关于积分的说明 11256121
捐赠科研通 3270913
什么是DOI,文献DOI怎么找? 1805105
邀请新用户注册赠送积分活动 882270
科研通“疑难数据库(出版商)”最低求助积分说明 809216