已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Method to predict alloy yield based on multiple raw material conditions and a PSO-LSTM network

铁合金 原材料 炼钢 粒子群优化 材料科学 合金 产量(工程) 工艺工程 冶金 计算机科学 机械工程 工程类 算法 化学 有机化学 渔业 生物
作者
Ruixuan Zheng,Yan-ping Bao,Lihua Zhao,Lidong Xing
出处
期刊:Journal of materials research and technology [Elsevier BV]
卷期号:27: 3310-3322 被引量:7
标识
DOI:10.1016/j.jmrt.2023.10.046
摘要

The production of ferroalloys accounts for a large proportion of the total energy consumption of the steelmaking industry. Accurately predicting alloy element yields is the key to reducing alloy waste, but there are significant differences in alloy yield under different conditions using ferroalloy raw materials during steelmaking. Therefore, this paper proposes a multi-model alloy element yield prediction method based on a particle swarm optimization (PSO) hyperparameter-optimized long short-term memory (LSTM) network and raw material condition classification. The accuracy of the PSO-LSTM prediction model was verified through simulations and was significantly higher than that of other network models when using the same raw material conditions. The average absolute error of predictions using raw materials with a low drum index was 0.4485, and it was 0.6162 under a high drum index, which was significantly lower than that (0.7077) under the condition without classification. This demonstrates the rationality of classifying working conditions according to the raw material conditions of ferroalloys. In addition, this paper combines the prediction model with a linear programming algorithm to develop a ferroalloy operating system and uses it in a steel plant to guide workers to complete an alloying operation. After four months of industrial testing, the internal control rate of finished steel composition increased from 91–94% to 95–98%. According to statistical analysis, the optimized HRB400E threaded steel consumed 1.23 kg less silicon-manganese per ton of steel, reduced the cost of steel alloy per ton by 8.6 yuan, and significantly reduced the waste of ferroalloys during steelmaking.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
小马甲应助maguodrgon采纳,获得10
1秒前
FY发布了新的文献求助10
2秒前
脑洞疼应助123采纳,获得10
2秒前
2秒前
2秒前
2秒前
3秒前
3秒前
充电宝应助活力怜雪采纳,获得10
4秒前
打打应助胡淼淼采纳,获得10
4秒前
5秒前
浅夏发布了新的文献求助10
5秒前
5秒前
6秒前
7秒前
符生发布了新的文献求助10
8秒前
杨欣发布了新的文献求助10
9秒前
杨欣发布了新的文献求助10
9秒前
杨欣发布了新的文献求助10
9秒前
杨欣发布了新的文献求助10
9秒前
杨欣发布了新的文献求助10
9秒前
9秒前
Derson发布了新的文献求助10
9秒前
坦率的砖头关注了科研通微信公众号
13秒前
陈嘉嘉发布了新的文献求助10
13秒前
JamesPei应助勤奋夜安采纳,获得10
15秒前
胡淼淼完成签到,获得积分10
16秒前
18秒前
20秒前
Thien发布了新的文献求助10
23秒前
24秒前
善学以致用应助朴素紫山采纳,获得10
26秒前
28秒前
29秒前
情怀应助134345采纳,获得10
29秒前
30秒前
面壁思过完成签到,获得积分10
30秒前
马到成功完成签到,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4934621
求助须知:如何正确求助?哪些是违规求助? 4202448
关于积分的说明 13057403
捐赠科研通 3976780
什么是DOI,文献DOI怎么找? 2179205
邀请新用户注册赠送积分活动 1195431
关于科研通互助平台的介绍 1106771