Overcoming the effect of muscle fatigue on gesture recognition based on sEMG via generative adversarial networks

计算机科学 肌肉疲劳 支持向量机 手势 人工智能 模式识别(心理学) 卷积神经网络 肌电图 手势识别 语音识别 物理医学与康复 医学
作者
Jinxin Ao,Shili Liang,Yan Tao,Rui Hou,Zheng Zong,JongSong Ryu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:238: 122304-122304 被引量:6
标识
DOI:10.1016/j.eswa.2023.122304
摘要

Surface electromyography (sEMG)-controlled bionic prostheses have been extensively investigated recently. However, the majority of investigations pertaining to gesture recognition grounded in sEMG predominantly center their focus on the human body in a static and non-fatigued condition, thus neglecting the ramifications of muscle fatigue on the precision of gesture recognition. This study explores the effect of muscle fatigue on recognition accuracy in a gesture recognition task based on sEMG. The muscle fatigue induction experiment was designed, and eight subjects were recruited to participate in the experiment to collect the sEMG signal data sets of seven gesture actions under non-fatigue and fatigue conditions. Seven gesture actions under non-fatigue and fatigue conditions were identified by four classifiers, namely K-nearest neighbor (K-NN), support vector machine (SVM), decision tree (DT), and deep convolution neural network (CNN). The experimental results show that muscle fatigue has a great impact on the accuracy of gesture recognition. Specifically, using the four classifiers K-NN, SVM, DT and CNN trained in the non-fatigue state, the test accuracy of sEMG signals in the non-fatigue state is 96.7 %, 89.0 %, 87.3 % and 97.5 % respectively, while the test accuracy in the fatigue state is reduced to 53.3 %, 55.4 %, 45.8 % and 64.8 % respectively. In this regard, we propose a new method to overcome the effects of muscle fatigue, namely, the data enhancement method based on Wasserstein General Adversary Networks-Gradient Penalty (WGAN-GP), which is used to enhance the sEMG signal under fatigue. Through the data enhancement of the fatigue sEMG signal, the experimental results show that the final test accuracy in the fatigue state is improved by more than 20 %, which can reach 72.3 %, 80.9 %, 69.9 % and 92.1 % respectively. This shows that the method proposed by us can effectively overcome the influence of muscle fatigue on the accuracy of gesture recognition, and has made a great contribution to the improvement of the robustness of gesture recognition model based on sEMG signal.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星空完成签到 ,获得积分10
3秒前
听闻韬声依旧完成签到 ,获得积分10
13秒前
QY完成签到 ,获得积分10
14秒前
老王完成签到 ,获得积分10
29秒前
jiangxuexue完成签到,获得积分10
33秒前
天行健完成签到,获得积分10
33秒前
Tirachen发布了新的文献求助10
36秒前
Ray完成签到 ,获得积分10
40秒前
Dearjw1655完成签到,获得积分10
43秒前
Tirachen完成签到,获得积分10
45秒前
spark810发布了新的文献求助30
46秒前
小伊001完成签到,获得积分10
46秒前
jiangxuexue发布了新的文献求助10
51秒前
fa完成签到,获得积分10
56秒前
无奈的邪欢完成签到,获得积分10
58秒前
coolplex完成签到 ,获得积分10
58秒前
moonlimb完成签到 ,获得积分10
1分钟前
口布鲁完成签到,获得积分10
1分钟前
serendipity完成签到 ,获得积分10
1分钟前
古炮完成签到 ,获得积分10
1分钟前
ccc完成签到 ,获得积分10
1分钟前
xxxksk完成签到 ,获得积分10
1分钟前
和平完成签到 ,获得积分10
1分钟前
梦想去广州当靓仔完成签到 ,获得积分10
1分钟前
Lynn完成签到 ,获得积分10
1分钟前
郑洋完成签到 ,获得积分10
1分钟前
likw23完成签到 ,获得积分10
1分钟前
又又完成签到,获得积分10
1分钟前
1分钟前
笨笨忘幽完成签到,获得积分10
1分钟前
lgbabe发布了新的文献求助10
1分钟前
娇娇大王完成签到,获得积分10
1分钟前
飞快的冰淇淋完成签到 ,获得积分10
1分钟前
wefor完成签到 ,获得积分10
1分钟前
青珊完成签到,获得积分10
1分钟前
善良元芹完成签到 ,获得积分10
2分钟前
Bill Wang完成签到 ,获得积分0
2分钟前
一禅完成签到 ,获得积分10
2分钟前
橘子海完成签到 ,获得积分10
2分钟前
努力的学完成签到,获得积分10
2分钟前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234696
求助须知:如何正确求助?哪些是违规求助? 2880925
关于积分的说明 8217427
捐赠科研通 2548592
什么是DOI,文献DOI怎么找? 1377856
科研通“疑难数据库(出版商)”最低求助积分说明 648057
邀请新用户注册赠送积分活动 623416