Overcoming the effect of muscle fatigue on gesture recognition based on sEMG via generative adversarial networks

计算机科学 肌肉疲劳 支持向量机 手势 人工智能 模式识别(心理学) 卷积神经网络 肌电图 手势识别 语音识别 物理医学与康复 医学
作者
Jinxin Ao,Shili Liang,Yan Tao,Rui Hou,Zheng Zong,JongSong Ryu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:238: 122304-122304 被引量:6
标识
DOI:10.1016/j.eswa.2023.122304
摘要

Surface electromyography (sEMG)-controlled bionic prostheses have been extensively investigated recently. However, the majority of investigations pertaining to gesture recognition grounded in sEMG predominantly center their focus on the human body in a static and non-fatigued condition, thus neglecting the ramifications of muscle fatigue on the precision of gesture recognition. This study explores the effect of muscle fatigue on recognition accuracy in a gesture recognition task based on sEMG. The muscle fatigue induction experiment was designed, and eight subjects were recruited to participate in the experiment to collect the sEMG signal data sets of seven gesture actions under non-fatigue and fatigue conditions. Seven gesture actions under non-fatigue and fatigue conditions were identified by four classifiers, namely K-nearest neighbor (K-NN), support vector machine (SVM), decision tree (DT), and deep convolution neural network (CNN). The experimental results show that muscle fatigue has a great impact on the accuracy of gesture recognition. Specifically, using the four classifiers K-NN, SVM, DT and CNN trained in the non-fatigue state, the test accuracy of sEMG signals in the non-fatigue state is 96.7 %, 89.0 %, 87.3 % and 97.5 % respectively, while the test accuracy in the fatigue state is reduced to 53.3 %, 55.4 %, 45.8 % and 64.8 % respectively. In this regard, we propose a new method to overcome the effects of muscle fatigue, namely, the data enhancement method based on Wasserstein General Adversary Networks-Gradient Penalty (WGAN-GP), which is used to enhance the sEMG signal under fatigue. Through the data enhancement of the fatigue sEMG signal, the experimental results show that the final test accuracy in the fatigue state is improved by more than 20 %, which can reach 72.3 %, 80.9 %, 69.9 % and 92.1 % respectively. This shows that the method proposed by us can effectively overcome the influence of muscle fatigue on the accuracy of gesture recognition, and has made a great contribution to the improvement of the robustness of gesture recognition model based on sEMG signal.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
初荣发布了新的文献求助10
刚刚
优翎发布了新的文献求助10
刚刚
OFish完成签到,获得积分10
2秒前
啊标完成签到,获得积分10
2秒前
饱满的海秋完成签到,获得积分10
3秒前
烟花应助dongyi采纳,获得10
3秒前
铠甲勇士完成签到,获得积分10
4秒前
小明应助会撒娇的志泽采纳,获得10
5秒前
李健应助会撒娇的志泽采纳,获得10
5秒前
wxyshare应助科研通管家采纳,获得10
6秒前
SciGPT应助科研通管家采纳,获得10
6秒前
852应助科研通管家采纳,获得100
6秒前
浮游应助科研通管家采纳,获得10
6秒前
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
Owen应助科研通管家采纳,获得10
6秒前
深情安青应助科研通管家采纳,获得10
7秒前
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
华仔应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
Criminology34应助科研通管家采纳,获得20
7秒前
Zoe完成签到,获得积分10
7秒前
徐佳琪发布了新的文献求助10
9秒前
坚定向彤完成签到,获得积分10
9秒前
11秒前
科研通AI6应助小飞采纳,获得10
13秒前
13秒前
传奇3应助瓦达西瓦小丑哒采纳,获得10
14秒前
15秒前
Hus11221发布了新的文献求助10
15秒前
香蕉觅云应助粗暴的朋友采纳,获得10
16秒前
hurb完成签到,获得积分10
16秒前
科研通AI6应助呵呵呵呵采纳,获得10
16秒前
独特鸽子发布了新的文献求助10
16秒前
柯柯完成签到,获得积分10
17秒前
书书完成签到 ,获得积分10
17秒前
17秒前
yunzhe发布了新的文献求助10
17秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
Machine Learning for Polymer Informatics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5384400
求助须知:如何正确求助?哪些是违规求助? 4507243
关于积分的说明 14027286
捐赠科研通 4416893
什么是DOI,文献DOI怎么找? 2426157
邀请新用户注册赠送积分活动 1418940
关于科研通互助平台的介绍 1397276