Overcoming the effect of muscle fatigue on gesture recognition based on sEMG via generative adversarial networks

计算机科学 肌肉疲劳 支持向量机 手势 人工智能 模式识别(心理学) 卷积神经网络 肌电图 手势识别 语音识别 物理医学与康复 医学
作者
Jinxin Ao,Shili Liang,Yan Tao,Rui Hou,Zheng Zong,JongSong Ryu
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:238: 122304-122304 被引量:6
标识
DOI:10.1016/j.eswa.2023.122304
摘要

Surface electromyography (sEMG)-controlled bionic prostheses have been extensively investigated recently. However, the majority of investigations pertaining to gesture recognition grounded in sEMG predominantly center their focus on the human body in a static and non-fatigued condition, thus neglecting the ramifications of muscle fatigue on the precision of gesture recognition. This study explores the effect of muscle fatigue on recognition accuracy in a gesture recognition task based on sEMG. The muscle fatigue induction experiment was designed, and eight subjects were recruited to participate in the experiment to collect the sEMG signal data sets of seven gesture actions under non-fatigue and fatigue conditions. Seven gesture actions under non-fatigue and fatigue conditions were identified by four classifiers, namely K-nearest neighbor (K-NN), support vector machine (SVM), decision tree (DT), and deep convolution neural network (CNN). The experimental results show that muscle fatigue has a great impact on the accuracy of gesture recognition. Specifically, using the four classifiers K-NN, SVM, DT and CNN trained in the non-fatigue state, the test accuracy of sEMG signals in the non-fatigue state is 96.7 %, 89.0 %, 87.3 % and 97.5 % respectively, while the test accuracy in the fatigue state is reduced to 53.3 %, 55.4 %, 45.8 % and 64.8 % respectively. In this regard, we propose a new method to overcome the effects of muscle fatigue, namely, the data enhancement method based on Wasserstein General Adversary Networks-Gradient Penalty (WGAN-GP), which is used to enhance the sEMG signal under fatigue. Through the data enhancement of the fatigue sEMG signal, the experimental results show that the final test accuracy in the fatigue state is improved by more than 20 %, which can reach 72.3 %, 80.9 %, 69.9 % and 92.1 % respectively. This shows that the method proposed by us can effectively overcome the influence of muscle fatigue on the accuracy of gesture recognition, and has made a great contribution to the improvement of the robustness of gesture recognition model based on sEMG signal.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zhai发布了新的文献求助10
1秒前
2秒前
Dr大壮发布了新的文献求助10
3秒前
4秒前
量子星尘发布了新的文献求助30
4秒前
hulin_zjxu完成签到,获得积分10
6秒前
6秒前
王一山发布了新的文献求助20
6秒前
哭泣乌完成签到,获得积分10
8秒前
yhbk完成签到 ,获得积分10
9秒前
猪猪hero应助是述不是沭采纳,获得10
9秒前
zhaoxiao完成签到 ,获得积分10
9秒前
mary发布了新的文献求助10
10秒前
梓墨完成签到,获得积分10
10秒前
10秒前
12秒前
Orange应助Dr_zhangkai采纳,获得30
13秒前
zhaoxiao发布了新的文献求助10
14秒前
Jason完成签到,获得积分10
15秒前
深情安青应助科研通管家采纳,获得10
16秒前
Owen应助科研通管家采纳,获得30
16秒前
完美世界应助科研通管家采纳,获得10
16秒前
大模型应助科研通管家采纳,获得10
16秒前
脑洞疼应助科研通管家采纳,获得10
16秒前
无花果应助科研通管家采纳,获得10
16秒前
共享精神应助科研通管家采纳,获得10
16秒前
LaTeXer应助科研通管家采纳,获得50
16秒前
风清扬应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
SciGPT应助皮崇知采纳,获得10
18秒前
在逃跑的康熙大帝在大笑完成签到,获得积分10
19秒前
19秒前
19秒前
21秒前
22秒前
张两丰发布了新的文献求助10
22秒前
23秒前
23秒前
24秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956172
求助须知:如何正确求助?哪些是违规求助? 3502400
关于积分的说明 11107420
捐赠科研通 3232954
什么是DOI,文献DOI怎么找? 1787093
邀请新用户注册赠送积分活动 870482
科研通“疑难数据库(出版商)”最低求助积分说明 802019