Overcoming the effect of muscle fatigue on gesture recognition based on sEMG via generative adversarial networks

计算机科学 肌肉疲劳 支持向量机 手势 人工智能 模式识别(心理学) 卷积神经网络 肌电图 手势识别 语音识别 物理医学与康复 医学
作者
Jinxin Ao,Shili Liang,Yan Tao,Rui Hou,Zheng Zong,JongSong Ryu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:238: 122304-122304 被引量:6
标识
DOI:10.1016/j.eswa.2023.122304
摘要

Surface electromyography (sEMG)-controlled bionic prostheses have been extensively investigated recently. However, the majority of investigations pertaining to gesture recognition grounded in sEMG predominantly center their focus on the human body in a static and non-fatigued condition, thus neglecting the ramifications of muscle fatigue on the precision of gesture recognition. This study explores the effect of muscle fatigue on recognition accuracy in a gesture recognition task based on sEMG. The muscle fatigue induction experiment was designed, and eight subjects were recruited to participate in the experiment to collect the sEMG signal data sets of seven gesture actions under non-fatigue and fatigue conditions. Seven gesture actions under non-fatigue and fatigue conditions were identified by four classifiers, namely K-nearest neighbor (K-NN), support vector machine (SVM), decision tree (DT), and deep convolution neural network (CNN). The experimental results show that muscle fatigue has a great impact on the accuracy of gesture recognition. Specifically, using the four classifiers K-NN, SVM, DT and CNN trained in the non-fatigue state, the test accuracy of sEMG signals in the non-fatigue state is 96.7 %, 89.0 %, 87.3 % and 97.5 % respectively, while the test accuracy in the fatigue state is reduced to 53.3 %, 55.4 %, 45.8 % and 64.8 % respectively. In this regard, we propose a new method to overcome the effects of muscle fatigue, namely, the data enhancement method based on Wasserstein General Adversary Networks-Gradient Penalty (WGAN-GP), which is used to enhance the sEMG signal under fatigue. Through the data enhancement of the fatigue sEMG signal, the experimental results show that the final test accuracy in the fatigue state is improved by more than 20 %, which can reach 72.3 %, 80.9 %, 69.9 % and 92.1 % respectively. This shows that the method proposed by us can effectively overcome the influence of muscle fatigue on the accuracy of gesture recognition, and has made a great contribution to the improvement of the robustness of gesture recognition model based on sEMG signal.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
falcon完成签到 ,获得积分10
刚刚
劈里啪啦发布了新的文献求助10
1秒前
耿强发布了新的文献求助10
1秒前
科研通AI5应助坚强的樱采纳,获得10
1秒前
陈杰发布了新的文献求助10
1秒前
nozero完成签到,获得积分10
3秒前
澜生发布了新的文献求助10
4秒前
在水一方应助惠惠采纳,获得10
4秒前
852应助zZ采纳,获得10
4秒前
小马甲应助陌路采纳,获得10
5秒前
1335804518完成签到 ,获得积分10
6秒前
6秒前
甜甜醉波完成签到,获得积分10
6秒前
科研通AI2S应助卷卷王采纳,获得10
7秒前
可爱的函函应助梦里采纳,获得10
7秒前
沐晴完成签到,获得积分10
8秒前
入夏完成签到,获得积分10
8秒前
8秒前
8秒前
苏州小北发布了新的文献求助10
9秒前
9秒前
snail完成签到,获得积分10
10秒前
劈里啪啦完成签到,获得积分10
10秒前
wanci应助Jasmine采纳,获得10
11秒前
aoxiangcaizi12完成签到,获得积分10
11秒前
ding应助通~采纳,获得30
12秒前
13秒前
Annie发布了新的文献求助10
13秒前
晨曦完成签到,获得积分10
14秒前
十一发布了新的文献求助10
14秒前
顾矜应助Peter采纳,获得30
15秒前
Ayanami完成签到,获得积分10
15秒前
英俊的铭应助ysl采纳,获得30
15秒前
酷波er应助范范采纳,获得10
15秒前
16秒前
Akim应助damian采纳,获得30
16秒前
16秒前
18秒前
番茄炒西红柿完成签到,获得积分10
19秒前
无限安蕾完成签到,获得积分10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794