Overcoming the effect of muscle fatigue on gesture recognition based on sEMG via generative adversarial networks

计算机科学 肌肉疲劳 支持向量机 手势 人工智能 模式识别(心理学) 卷积神经网络 肌电图 手势识别 语音识别 物理医学与康复 医学
作者
Jinxin Ao,Shili Liang,Yan Tao,Rui Hou,Zheng Zong,JongSong Ryu
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:238: 122304-122304 被引量:6
标识
DOI:10.1016/j.eswa.2023.122304
摘要

Surface electromyography (sEMG)-controlled bionic prostheses have been extensively investigated recently. However, the majority of investigations pertaining to gesture recognition grounded in sEMG predominantly center their focus on the human body in a static and non-fatigued condition, thus neglecting the ramifications of muscle fatigue on the precision of gesture recognition. This study explores the effect of muscle fatigue on recognition accuracy in a gesture recognition task based on sEMG. The muscle fatigue induction experiment was designed, and eight subjects were recruited to participate in the experiment to collect the sEMG signal data sets of seven gesture actions under non-fatigue and fatigue conditions. Seven gesture actions under non-fatigue and fatigue conditions were identified by four classifiers, namely K-nearest neighbor (K-NN), support vector machine (SVM), decision tree (DT), and deep convolution neural network (CNN). The experimental results show that muscle fatigue has a great impact on the accuracy of gesture recognition. Specifically, using the four classifiers K-NN, SVM, DT and CNN trained in the non-fatigue state, the test accuracy of sEMG signals in the non-fatigue state is 96.7 %, 89.0 %, 87.3 % and 97.5 % respectively, while the test accuracy in the fatigue state is reduced to 53.3 %, 55.4 %, 45.8 % and 64.8 % respectively. In this regard, we propose a new method to overcome the effects of muscle fatigue, namely, the data enhancement method based on Wasserstein General Adversary Networks-Gradient Penalty (WGAN-GP), which is used to enhance the sEMG signal under fatigue. Through the data enhancement of the fatigue sEMG signal, the experimental results show that the final test accuracy in the fatigue state is improved by more than 20 %, which can reach 72.3 %, 80.9 %, 69.9 % and 92.1 % respectively. This shows that the method proposed by us can effectively overcome the influence of muscle fatigue on the accuracy of gesture recognition, and has made a great contribution to the improvement of the robustness of gesture recognition model based on sEMG signal.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助123采纳,获得10
刚刚
刚刚
深情安青应助侧耳倾听采纳,获得10
1秒前
Wlgd完成签到,获得积分20
1秒前
合成研究菜鸟完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
糊里糊涂发布了新的文献求助10
3秒前
碧草柴香发布了新的文献求助100
3秒前
浮游应助杨宝采纳,获得10
3秒前
科研小白书hz完成签到 ,获得积分10
4秒前
理理完成签到,获得积分10
4秒前
FangY1发布了新的文献求助10
4秒前
7171717发布了新的文献求助10
5秒前
orixero应助鲸鱼采纳,获得10
5秒前
6秒前
小方应助一块巧克力采纳,获得20
6秒前
6秒前
端庄的冰枫完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
7秒前
7秒前
Yzz发布了新的文献求助10
7秒前
WYS完成签到,获得积分20
7秒前
8秒前
酷波er应助小白采纳,获得10
8秒前
量子星尘发布了新的文献求助10
8秒前
SciGPT应助明朗采纳,获得10
8秒前
10秒前
11秒前
Salut发布了新的文献求助10
11秒前
11秒前
零一完成签到,获得积分10
11秒前
中药中医科研狗1123完成签到,获得积分10
11秒前
11秒前
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604729
求助须知:如何正确求助?哪些是违规求助? 4012976
关于积分的说明 12425700
捐赠科研通 3693576
什么是DOI,文献DOI怎么找? 2036429
邀请新用户注册赠送积分活动 1069421
科研通“疑难数据库(出版商)”最低求助积分说明 953917