PreHom-PCLM: protein remote homology detection by combing motifs and protein cubic language model

计算机科学 判别式 同源建模 同源(生物学) 持久同源性 计算生物学 结构母题 人工智能 序列母题 蛋白质结构 模式识别(心理学) 生物 遗传学 算法 基因 生物化学
作者
Jiangyi Shao,Qi Zhang,Ke Yan,Yihe Pang
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (6)
标识
DOI:10.1093/bib/bbad347
摘要

Abstract Protein remote homology detection is essential for structure prediction, function prediction, disease mechanism understanding, etc. The remote homology relationship depends on multiple protein properties, such as structural information and local sequence patterns. Previous studies have shown the challenges for predicting remote homology relationship by protein features at sequence level (e.g. position-specific score matrix). Protein motifs have been used in structure and function analysis due to their unique sequence patterns and implied structural information. Therefore, designing a usable architecture to fuse multiple protein properties based on motifs is urgently needed to improve protein remote homology detection performance. To make full use of the characteristics of motifs, we employed the language model called the protein cubic language model (PCLM). It combines multiple properties by constructing a motif-based neural network. Based on the PCLM, we proposed a predictor called PreHom-PCLM by extracting and fusing multiple motif features for protein remote homology detection. PreHom-PCLM outperforms the other state-of-the-art methods on the test set and independent test set. Experimental results further prove the effectiveness of multiple features fused by PreHom-PCLM for remote homology detection. Furthermore, the protein features derived from the PreHom-PCLM show strong discriminative power for proteins from different structural classes in the high-dimensional space. Availability and Implementation: http://bliulab.net/PreHom-PCLM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dmsoli完成签到,获得积分10
刚刚
上官若男应助机智谷蕊采纳,获得10
1秒前
小鱼爱吃肉应助dongjingran采纳,获得10
1秒前
研友_VZG7GZ应助平淡的寄风采纳,获得10
1秒前
Cloud完成签到,获得积分10
1秒前
123应助Ariel96采纳,获得20
2秒前
2秒前
毛豆应助陈陈采纳,获得10
2秒前
滴滴滴发布了新的文献求助10
2秒前
3秒前
靓丽剑心发布了新的文献求助10
3秒前
merryorange完成签到,获得积分10
3秒前
3秒前
Su发布了新的文献求助10
4秒前
zzh完成签到,获得积分10
4秒前
11完成签到,获得积分10
4秒前
ZcLee完成签到,获得积分20
4秒前
5秒前
yar应助优秀寻云采纳,获得10
6秒前
6秒前
大气惜天完成签到 ,获得积分10
6秒前
欢呼芒果发布了新的文献求助10
7秒前
默涵清完成签到,获得积分20
7秒前
9秒前
痴情的雁易完成签到,获得积分10
9秒前
默涵清发布了新的文献求助10
10秒前
Orange应助白鸽鸽采纳,获得10
10秒前
王科研完成签到,获得积分10
11秒前
青蒜苗完成签到,获得积分20
12秒前
12秒前
13秒前
13秒前
打打应助欢呼芒果采纳,获得10
13秒前
14秒前
123应助向天采纳,获得10
14秒前
十一发布了新的文献求助10
14秒前
15秒前
15秒前
Ava应助王科研采纳,获得10
16秒前
17秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313164
求助须知:如何正确求助?哪些是违规求助? 2945518
关于积分的说明 8525845
捐赠科研通 2621328
什么是DOI,文献DOI怎么找? 1433461
科研通“疑难数据库(出版商)”最低求助积分说明 665025
邀请新用户注册赠送积分活动 650493