Design of efficient thermal conductive epoxy resin composites via highspeed transport pathways of heterogeneous compatible carbon framework

复合材料 材料科学 热导率 碳纳米管 极限抗拉强度 环氧树脂 润湿
作者
Bin Wang,Yaotian Yan,Bin Qin,Zhenyu Ye,Jian Cao,Junlei Qi
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:476: 146535-146535 被引量:6
标识
DOI:10.1016/j.cej.2023.146535
摘要

Thermal interface materials are crucial for addressing the hot issues of a rapid increase in thermal density in narrow and limited service spaces. Flexible and designable epoxy resin (EP) based composites are competitive choice yet lacks desirable thermal conductivity (∼0.2 W m−1 K−1) and mechanical properties (tensile strength: ∼19.6 MPa). Herein, EP-based composites with a reinforced three-dimensional (3D) interconnected carbon material architecture were prepared by in-situ growing 1D carbon nanotubes (CNTs) on the surface of 2D carbon fiber braid (CFB) and infiltrating matrix EP. CNTs not only promote the wettability between carbon fibers inside CFB and EP but also observably bridge the adjacent carbon fibers. The analysis of numerical models reveals the prominent contribution of 3D CFB/CNTs network to a significant increase in thermal conductivity. Non-equilibrium molecular dynamics (NEMD) indicates the high intrinsic thermal conductivity of CNTs in both systems: single CNT model and CNT/Ni model. The coupling behavior of high-frequency phonons at the interface contributes to the in-plane thermal transport. The in-plane thermal conductivity of 7.86 W m−1 K−1 and the through-plane thermal conductivity of 5.85 W m−1 K−1 are obtained in the composites with 23.2 wt% hybrid fillers, increased by 3830 % compared to neat EP. The tensile (58.93 MPa) and compressive strength (138.83 MPa) are also enhanced, meeting practical demands. These properties even perform no obvious changes after 100 cycles of bending. The stable and reliable EP-based composites with outstanding comprehensive performance designed by this work have enormous application potential in the advanced heat dissipation system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小苔藓发布了新的文献求助10
1秒前
忐忑的老虎完成签到,获得积分10
4秒前
saikun发布了新的文献求助10
4秒前
5秒前
han关闭了han文献求助
6秒前
ice发布了新的文献求助10
6秒前
8秒前
平常向雪完成签到,获得积分10
9秒前
Six_seven完成签到,获得积分10
9秒前
123完成签到,获得积分10
9秒前
毛豆应助机智剑封采纳,获得10
10秒前
11秒前
11秒前
12秒前
上官若男应助邢夏之采纳,获得10
13秒前
13秒前
14秒前
14秒前
夏夏发布了新的文献求助10
16秒前
16秒前
16秒前
nulinuli发布了新的文献求助10
17秒前
ice完成签到,获得积分10
17秒前
hyy发布了新的文献求助10
19秒前
今后应助扭一扭泡一泡采纳,获得10
20秒前
喝水吗完成签到,获得积分10
20秒前
高挑的涛发布了新的文献求助30
22秒前
小胡发SCI完成签到,获得积分10
22秒前
芒果发布了新的文献求助10
25秒前
surou完成签到,获得积分20
26秒前
所所应助nulinuli采纳,获得10
28秒前
着急的尔安完成签到 ,获得积分10
30秒前
侯雪晴完成签到 ,获得积分10
30秒前
gy完成签到,获得积分20
31秒前
hyy完成签到,获得积分10
31秒前
AAA123完成签到,获得积分10
32秒前
别改了完成签到,获得积分10
33秒前
33秒前
感动的银耳汤完成签到,获得积分10
33秒前
NUNKI完成签到,获得积分10
34秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Production Logging: Theoretical and Interpretive Elements 1500
Very-high-order BVD Schemes Using β-variable THINC Method 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Mesopotamian Divination Texts: Conversing with the Gods 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3289467
求助须知:如何正确求助?哪些是违规求助? 2926438
关于积分的说明 8427229
捐赠科研通 2597679
什么是DOI,文献DOI怎么找? 1417284
科研通“疑难数据库(出版商)”最低求助积分说明 659669
邀请新用户注册赠送积分活动 642133