Design of efficient thermal conductive epoxy resin composites via highspeed transport pathways of heterogeneous compatible carbon framework

复合材料 材料科学 热导率 碳纳米管 极限抗拉强度 环氧树脂 润湿
作者
Bin Wang,Yaotian Yan,Bin Qin,Zhenyu Ye,Jian Cao,Junlei Qi
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:476: 146535-146535 被引量:6
标识
DOI:10.1016/j.cej.2023.146535
摘要

Thermal interface materials are crucial for addressing the hot issues of a rapid increase in thermal density in narrow and limited service spaces. Flexible and designable epoxy resin (EP) based composites are competitive choice yet lacks desirable thermal conductivity (∼0.2 W m−1 K−1) and mechanical properties (tensile strength: ∼19.6 MPa). Herein, EP-based composites with a reinforced three-dimensional (3D) interconnected carbon material architecture were prepared by in-situ growing 1D carbon nanotubes (CNTs) on the surface of 2D carbon fiber braid (CFB) and infiltrating matrix EP. CNTs not only promote the wettability between carbon fibers inside CFB and EP but also observably bridge the adjacent carbon fibers. The analysis of numerical models reveals the prominent contribution of 3D CFB/CNTs network to a significant increase in thermal conductivity. Non-equilibrium molecular dynamics (NEMD) indicates the high intrinsic thermal conductivity of CNTs in both systems: single CNT model and CNT/Ni model. The coupling behavior of high-frequency phonons at the interface contributes to the in-plane thermal transport. The in-plane thermal conductivity of 7.86 W m−1 K−1 and the through-plane thermal conductivity of 5.85 W m−1 K−1 are obtained in the composites with 23.2 wt% hybrid fillers, increased by 3830 % compared to neat EP. The tensile (58.93 MPa) and compressive strength (138.83 MPa) are also enhanced, meeting practical demands. These properties even perform no obvious changes after 100 cycles of bending. The stable and reliable EP-based composites with outstanding comprehensive performance designed by this work have enormous application potential in the advanced heat dissipation system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lhy12345完成签到 ,获得积分10
1秒前
可爱的函函应助Evander采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
1秒前
打打应助科研通管家采纳,获得10
1秒前
1秒前
852应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
愉快的花卷完成签到,获得积分10
1秒前
CodeCraft应助科研通管家采纳,获得10
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
醉熏的天薇完成签到,获得积分10
2秒前
2秒前
Orange应助科研通管家采纳,获得10
2秒前
李健应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
完美世界应助科研通管家采纳,获得30
2秒前
上官若男应助科研通管家采纳,获得10
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
彭于晏应助科研通管家采纳,获得10
2秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
天天快乐应助科研通管家采纳,获得10
3秒前
Ava应助科研通管家采纳,获得10
3秒前
3秒前
小二郎应助科研通管家采纳,获得10
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
田様应助科研通管家采纳,获得10
3秒前
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
NexusExplorer应助科研通管家采纳,获得30
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
Ava应助科研通管家采纳,获得10
3秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Alloy Phase Diagrams 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5420180
求助须知:如何正确求助?哪些是违规求助? 4535297
关于积分的说明 14149461
捐赠科研通 4452280
什么是DOI,文献DOI怎么找? 2442103
邀请新用户注册赠送积分活动 1433615
关于科研通互助平台的介绍 1410869