DSCA-Net: Double-stage Codec Attention Network for automatic nuclear segmentation

计算机科学 分割 特征(语言学) 编码器 人工智能 模式识别(心理学) 棱锥(几何) 编解码器 数学 几何学 计算机硬件 语言学 操作系统 哲学
作者
Zhiwei Ye,Bin Hu,Haigang Sui,Mengqing Mei,Liye Mei,Ran Zhou
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:88: 105569-105569 被引量:8
标识
DOI:10.1016/j.bspc.2023.105569
摘要

The rapid and precise segmentation of cell nuclei from hematoxylin and eosin-stained tissue images is an essential clinical undertaking with significant implications for various clinical applications. The segmentation of cell nuclei poses specific challenges due to the inherent instability of nuclear morphology and the complexity of the segmentation environments. Furthermore, previous studies have primarily relied on small-scale and limited-diverse datasets, potentially hindering their applicability to clinical tasks. This study introduces a novel approach, the Double-stage Codec Attention Network, designed to automatically and accurately segment nuclei. Specifically, we present a hierarchical feature extraction module, which maximizes the utilization of cell nuclei's morphological characteristics in the tissue, thereby providing critical semantic information for nucleus segmentation. Furthermore, the feature selection units are employed to enhance relevant features and suppress interfering ones, thereby enhancing the overall expressive capacity of the information. The multi-scale deep feature fusion module utilizes interrelated encoder–decoder connections to jointly optimize and integrate this information, generating a robust hierarchical feature pyramid. Finally, the feature attention fusion mechanism captures spatial and directional information, aiding the model in the accurate localization and recognition of cell nuclei. We rigorously evaluated our proposed method using the PanNuke dataset, the largest comprehensive histology dataset of cancer tissues. In terms of the average F1-score across all segmentation classes in the PanNuke dataset, DSCA-Net outperforms other state-of-the-art models such as DeepLabV3+, TransUNet, Triple U-net, and TransNuSeg by 1.38, 1.44, 2.64, and 1.02, respectively. Additionally, DSCA-Net shows excellent efficiency in generating predictive images, outperforming all comparative models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lin完成签到,获得积分10
1秒前
哈哈完成签到,获得积分10
1秒前
1秒前
小蘑菇应助李有钱采纳,获得10
2秒前
可爱的函函应助Ode采纳,获得10
3秒前
cherlie应助Zo采纳,获得10
4秒前
Orange应助薄荷巧克力采纳,获得10
5秒前
6秒前
7秒前
7秒前
8秒前
皮皮完成签到 ,获得积分10
9秒前
离线发布了新的文献求助10
10秒前
10秒前
10秒前
瘦瘦小萱完成签到 ,获得积分10
10秒前
11秒前
12秒前
ghghgh完成签到,获得积分10
12秒前
ED应助科研通管家采纳,获得10
12秒前
EED发布了新的文献求助10
12秒前
turquoise应助科研通管家采纳,获得10
12秒前
今后应助科研通管家采纳,获得10
12秒前
12秒前
猪猪hero发布了新的文献求助30
12秒前
5321完成签到,获得积分10
12秒前
大个应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得30
12秒前
1601929058x发布了新的文献求助10
12秒前
12秒前
NexusExplorer应助科研通管家采纳,获得10
12秒前
dongjy应助科研通管家采纳,获得30
12秒前
Rubby应助科研通管家采纳,获得10
12秒前
SciGPT应助科研通管家采纳,获得10
12秒前
ED应助科研通管家采纳,获得10
12秒前
qqqqqqy应助科研通管家采纳,获得20
13秒前
13秒前
华仔应助科研通管家采纳,获得10
13秒前
Rubby应助科研通管家采纳,获得10
13秒前
Water应助科研通管家采纳,获得10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992229
求助须知:如何正确求助?哪些是违规求助? 3533231
关于积分的说明 11261619
捐赠科研通 3272656
什么是DOI,文献DOI怎么找? 1805867
邀请新用户注册赠送积分活动 882720
科研通“疑难数据库(出版商)”最低求助积分说明 809452