计算机科学
一致性(知识库)
节点(物理)
因果推理
推论
人工智能
社交网络(社会语言学)
社会网络分析
机器学习
图形
数据挖掘
理论计算机科学
计量经济学
社会化媒体
数学
结构工程
万维网
工程类
作者
Jiangli Shao,Yongqing Wang,Fangda Guo,Boshen Shi,Huawei Shen,Xueqi Cheng
标识
DOI:10.1145/3583780.3614799
摘要
Social network alignment is widely applied in web applications for identifying corresponding nodes across different networks, such as linking users across two social networks. Existing methods for social network alignment primarily rely on alignment consistency, assuming that nodes with similar attributes and neighbors are more likely to be aligned. However, distributional discrepancies in node attributes and neighbors across different networks would bring biases in alignment consistency, leading to inferior alignment performance. To address this issue, we conduct a causal analysis of alignment consistency. Based on this analysis, we propose a novel model called CANA that uses causal inference approaches to mitigate biases and enhance social network alignment. Firstly, we disentangle observed node attributes into endogenous features and exogenous features with multi-task learning. Only endogenous features are retained to overcome node attribute discrepancies. To eliminate biases caused by neighbors discrepancies, we propose causal-aware attention mechanisms and integrate them in graph neural network to reweight contributions of different neighbors in alignment consistency comparison. Additionally, backdoor adjustment is applied to reduce confounding effects and estimate unbiased alignment probability. Through experimental evaluation on four real-world datasets, the proposed method demonstrates superior performance in terms of alignment accuracy and top-k hits precision.
科研通智能强力驱动
Strongly Powered by AbleSci AI