CANA: Causal-enhanced Social Network Alignment

计算机科学 一致性(知识库) 节点(物理) 因果推理 推论 人工智能 社交网络(社会语言学) 社会网络分析 机器学习 图形 数据挖掘 理论计算机科学 计量经济学 社会化媒体 数学 万维网 工程类 结构工程
作者
Jiangli Shao,Yongqing Wang,Fangda Guo,Boshen Shi,Huawei Shen,Xueqi Cheng
标识
DOI:10.1145/3583780.3614799
摘要

Social network alignment is widely applied in web applications for identifying corresponding nodes across different networks, such as linking users across two social networks. Existing methods for social network alignment primarily rely on alignment consistency, assuming that nodes with similar attributes and neighbors are more likely to be aligned. However, distributional discrepancies in node attributes and neighbors across different networks would bring biases in alignment consistency, leading to inferior alignment performance. To address this issue, we conduct a causal analysis of alignment consistency. Based on this analysis, we propose a novel model called CANA that uses causal inference approaches to mitigate biases and enhance social network alignment. Firstly, we disentangle observed node attributes into endogenous features and exogenous features with multi-task learning. Only endogenous features are retained to overcome node attribute discrepancies. To eliminate biases caused by neighbors discrepancies, we propose causal-aware attention mechanisms and integrate them in graph neural network to reweight contributions of different neighbors in alignment consistency comparison. Additionally, backdoor adjustment is applied to reduce confounding effects and estimate unbiased alignment probability. Through experimental evaluation on four real-world datasets, the proposed method demonstrates superior performance in terms of alignment accuracy and top-k hits precision.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一事无成的研一完成签到,获得积分10
1秒前
子车茗应助机智小兔子采纳,获得10
2秒前
syxz0628完成签到,获得积分10
3秒前
aaaaa发布了新的文献求助20
3秒前
Sherry发布了新的文献求助10
3秒前
杨锐发布了新的文献求助10
3秒前
kai完成签到,获得积分10
3秒前
3秒前
5秒前
Janice227完成签到,获得积分10
5秒前
郭郭要努力ya完成签到 ,获得积分0
5秒前
科研通AI5应助kobe采纳,获得10
6秒前
to高坚果发布了新的文献求助10
7秒前
西门明雪完成签到,获得积分10
7秒前
自由的松发布了新的文献求助10
8秒前
10秒前
10秒前
olia发布了新的文献求助10
10秒前
Candice应助孤独树叶采纳,获得10
11秒前
YUJIALING完成签到 ,获得积分10
11秒前
酷波er应助tdtk采纳,获得10
11秒前
冰冰完成签到 ,获得积分20
12秒前
12秒前
12秒前
胡桃夹子发布了新的文献求助30
12秒前
13秒前
syxz0628发布了新的文献求助10
13秒前
都可以完成签到,获得积分10
13秒前
科研通AI5应助qfchen0716网易采纳,获得10
14秒前
JamesPei应助qfchen0716网易采纳,获得10
14秒前
丘比特应助qfchen0716网易采纳,获得10
14秒前
子川发布了新的文献求助10
14秒前
田様应助qfchen0716网易采纳,获得10
14秒前
科目三应助qfchen0716网易采纳,获得10
15秒前
黄紫红蓝应助qfchen0716网易采纳,获得10
15秒前
rr发布了新的文献求助10
15秒前
科目三应助qfchen0716网易采纳,获得10
15秒前
Orange应助qfchen0716网易采纳,获得10
15秒前
FashionBoy应助qfchen0716网易采纳,获得10
15秒前
今后应助qfchen0716网易采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5194361
求助须知:如何正确求助?哪些是违规求助? 4376657
关于积分的说明 13629793
捐赠科研通 4231614
什么是DOI,文献DOI怎么找? 2321134
邀请新用户注册赠送积分活动 1319292
关于科研通互助平台的介绍 1269676