亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

CANA: Causal-enhanced Social Network Alignment

计算机科学 一致性(知识库) 节点(物理) 因果推理 推论 人工智能 社交网络(社会语言学) 社会网络分析 机器学习 图形 数据挖掘 理论计算机科学 计量经济学 社会化媒体 数学 结构工程 万维网 工程类
作者
Jiangli Shao,Yongqing Wang,Fangda Guo,Boshen Shi,Huawei Shen,Xueqi Cheng
标识
DOI:10.1145/3583780.3614799
摘要

Social network alignment is widely applied in web applications for identifying corresponding nodes across different networks, such as linking users across two social networks. Existing methods for social network alignment primarily rely on alignment consistency, assuming that nodes with similar attributes and neighbors are more likely to be aligned. However, distributional discrepancies in node attributes and neighbors across different networks would bring biases in alignment consistency, leading to inferior alignment performance. To address this issue, we conduct a causal analysis of alignment consistency. Based on this analysis, we propose a novel model called CANA that uses causal inference approaches to mitigate biases and enhance social network alignment. Firstly, we disentangle observed node attributes into endogenous features and exogenous features with multi-task learning. Only endogenous features are retained to overcome node attribute discrepancies. To eliminate biases caused by neighbors discrepancies, we propose causal-aware attention mechanisms and integrate them in graph neural network to reweight contributions of different neighbors in alignment consistency comparison. Additionally, backdoor adjustment is applied to reduce confounding effects and estimate unbiased alignment probability. Through experimental evaluation on four real-world datasets, the proposed method demonstrates superior performance in terms of alignment accuracy and top-k hits precision.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助善良的焦采纳,获得10
1秒前
gexzygg应助科研通管家采纳,获得10
7秒前
ceeray23应助科研通管家采纳,获得10
7秒前
shhoing应助科研通管家采纳,获得30
7秒前
gexzygg应助科研通管家采纳,获得10
7秒前
gexzygg应助科研通管家采纳,获得10
7秒前
ceeray23应助科研通管家采纳,获得10
7秒前
shhoing应助科研通管家采纳,获得10
8秒前
9秒前
大方的笑萍完成签到 ,获得积分10
11秒前
WX完成签到 ,获得积分10
23秒前
Xjx6519发布了新的文献求助10
26秒前
37秒前
38秒前
yyck发布了新的文献求助10
41秒前
善良的焦发布了新的文献求助10
41秒前
HYQ完成签到 ,获得积分10
44秒前
新秀微博发布了新的文献求助10
55秒前
hodi完成签到,获得积分10
55秒前
mao完成签到 ,获得积分10
59秒前
善良的焦完成签到,获得积分10
1分钟前
新秀微博完成签到,获得积分10
1分钟前
斜阳完成签到 ,获得积分10
1分钟前
ceeray23发布了新的文献求助20
1分钟前
涵雁完成签到 ,获得积分20
1分钟前
三千世界完成签到,获得积分10
1分钟前
李健应助gaijiaofanv采纳,获得10
1分钟前
尔白完成签到 ,获得积分10
1分钟前
1分钟前
gaijiaofanv发布了新的文献求助10
1分钟前
烤鱼片完成签到 ,获得积分10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
shhoing应助科研通管家采纳,获得10
2分钟前
Ava应助科研通管家采纳,获得10
2分钟前
gexzygg应助科研通管家采纳,获得20
2分钟前
雨霧雲完成签到,获得积分10
2分钟前
龍Ryu完成签到,获得积分10
2分钟前
aiai发布了新的文献求助10
2分钟前
2分钟前
tepqi发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5558432
求助须知:如何正确求助?哪些是违规求助? 4643483
关于积分的说明 14671107
捐赠科研通 4584781
什么是DOI,文献DOI怎么找? 2515173
邀请新用户注册赠送积分活动 1489225
关于科研通互助平台的介绍 1459827