CANA: Causal-enhanced Social Network Alignment

计算机科学 一致性(知识库) 节点(物理) 因果推理 推论 人工智能 社交网络(社会语言学) 社会网络分析 机器学习 图形 数据挖掘 理论计算机科学 计量经济学 社会化媒体 数学 结构工程 万维网 工程类
作者
Jiangli Shao,Yongqing Wang,Fangda Guo,Boshen Shi,Huawei Shen,Xueqi Cheng
标识
DOI:10.1145/3583780.3614799
摘要

Social network alignment is widely applied in web applications for identifying corresponding nodes across different networks, such as linking users across two social networks. Existing methods for social network alignment primarily rely on alignment consistency, assuming that nodes with similar attributes and neighbors are more likely to be aligned. However, distributional discrepancies in node attributes and neighbors across different networks would bring biases in alignment consistency, leading to inferior alignment performance. To address this issue, we conduct a causal analysis of alignment consistency. Based on this analysis, we propose a novel model called CANA that uses causal inference approaches to mitigate biases and enhance social network alignment. Firstly, we disentangle observed node attributes into endogenous features and exogenous features with multi-task learning. Only endogenous features are retained to overcome node attribute discrepancies. To eliminate biases caused by neighbors discrepancies, we propose causal-aware attention mechanisms and integrate them in graph neural network to reweight contributions of different neighbors in alignment consistency comparison. Additionally, backdoor adjustment is applied to reduce confounding effects and estimate unbiased alignment probability. Through experimental evaluation on four real-world datasets, the proposed method demonstrates superior performance in terms of alignment accuracy and top-k hits precision.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Grayball应助ccc采纳,获得10
刚刚
bkagyin应助猪猪hero采纳,获得10
1秒前
1秒前
科研通AI5应助顺利毕业采纳,获得10
2秒前
领导范儿应助spray采纳,获得30
2秒前
2秒前
长风完成签到,获得积分10
3秒前
4秒前
吴岳发布了新的文献求助10
4秒前
科研通AI2S应助我是125采纳,获得10
5秒前
涛涛完成签到,获得积分10
5秒前
轩辕德地发布了新的文献求助10
6秒前
科研通AI2S应助jidou1011采纳,获得10
6秒前
魔幻的妖丽完成签到 ,获得积分10
7秒前
黄晓杰2024完成签到,获得积分10
8秒前
枫叶完成签到,获得积分10
9秒前
9秒前
10秒前
小二郎应助虚心盼晴采纳,获得10
10秒前
俊逸的盛男完成签到 ,获得积分10
10秒前
12秒前
脑洞疼应助枫叶采纳,获得10
13秒前
13秒前
Gyrate完成签到,获得积分10
14秒前
李李发布了新的文献求助50
14秒前
dashi完成签到 ,获得积分10
14秒前
无花果应助一天八杯水采纳,获得10
14秒前
14秒前
SS发布了新的文献求助10
15秒前
顺顺发布了新的文献求助10
16秒前
16秒前
16秒前
www发布了新的文献求助10
16秒前
17秒前
17秒前
李繁蕊发布了新的文献求助10
18秒前
暴躁的嘉懿完成签到,获得积分10
18秒前
LZH发布了新的文献求助20
18秒前
领导范儿应助rosexu采纳,获得10
19秒前
华生完成签到,获得积分10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808