CANA: Causal-enhanced Social Network Alignment

计算机科学 一致性(知识库) 节点(物理) 因果推理 推论 人工智能 社交网络(社会语言学) 社会网络分析 机器学习 图形 数据挖掘 理论计算机科学 计量经济学 社会化媒体 数学 万维网 工程类 结构工程
作者
Jiangli Shao,Yongqing Wang,Fangda Guo,Boshen Shi,Huawei Shen,Xueqi Cheng
标识
DOI:10.1145/3583780.3614799
摘要

Social network alignment is widely applied in web applications for identifying corresponding nodes across different networks, such as linking users across two social networks. Existing methods for social network alignment primarily rely on alignment consistency, assuming that nodes with similar attributes and neighbors are more likely to be aligned. However, distributional discrepancies in node attributes and neighbors across different networks would bring biases in alignment consistency, leading to inferior alignment performance. To address this issue, we conduct a causal analysis of alignment consistency. Based on this analysis, we propose a novel model called CANA that uses causal inference approaches to mitigate biases and enhance social network alignment. Firstly, we disentangle observed node attributes into endogenous features and exogenous features with multi-task learning. Only endogenous features are retained to overcome node attribute discrepancies. To eliminate biases caused by neighbors discrepancies, we propose causal-aware attention mechanisms and integrate them in graph neural network to reweight contributions of different neighbors in alignment consistency comparison. Additionally, backdoor adjustment is applied to reduce confounding effects and estimate unbiased alignment probability. Through experimental evaluation on four real-world datasets, the proposed method demonstrates superior performance in terms of alignment accuracy and top-k hits precision.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夜雨清痕y发布了新的文献求助10
刚刚
冯蜜柚子茶完成签到,获得积分10
刚刚
科研通AI6应助读书的时候采纳,获得10
1秒前
Hello应助难过亦丝采纳,获得10
3秒前
迷你的寒凝完成签到,获得积分10
3秒前
DrYang完成签到,获得积分10
3秒前
4秒前
DDD应助yfy_fairy采纳,获得10
4秒前
6秒前
6秒前
6秒前
GGbound发布了新的文献求助10
8秒前
大模型应助哒哒哒采纳,获得10
9秒前
懒羊羊完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
科研通AI6应助彩色采纳,获得10
10秒前
10秒前
小罗黑的发布了新的文献求助10
10秒前
11秒前
思源应助自然自行车采纳,获得10
12秒前
直率小霜发布了新的文献求助10
12秒前
13秒前
14秒前
CCS发布了新的文献求助10
16秒前
Hello应助夜雨清痕y采纳,获得10
16秒前
16秒前
16秒前
wq完成签到,获得积分20
17秒前
kiminonawa应助yuaasusanaann采纳,获得10
17秒前
18秒前
李华完成签到,获得积分10
18秒前
18秒前
18秒前
Ayyyyy发布了新的文献求助10
18秒前
桐桐应助梓mua采纳,获得10
20秒前
碧蓝亦玉完成签到 ,获得积分10
20秒前
哒哒哒发布了新的文献求助10
22秒前
22秒前
living笑白发布了新的文献求助10
22秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694141
求助须知:如何正确求助?哪些是违规求助? 5095906
关于积分的说明 15212994
捐赠科研通 4850815
什么是DOI,文献DOI怎么找? 2602009
邀请新用户注册赠送积分活动 1553827
关于科研通互助平台的介绍 1511800