Nonlocal Hybrid Network for Long-tailed Image Classification

人工智能 模式识别(心理学) 计算机科学 分类器(UML) 特征(语言学) 机器学习 像素 数学 语言学 哲学
作者
Rongjiao Liang,Shichao Zhang,Wenzhen Zhang,Guixian Zhang,Jinyun Tang
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
标识
DOI:10.1145/3630256
摘要

It is a significant issue to deal with long-tailed data when classifying images. A nonlocal hybrid network (NHN) that takes account of both feature learning and classifier learning is proposed. The NHN can capture the existence of dependencies between two locations that are far away from each other, as well as alleviate the impact of long-tailed data on the model to some extent. The dependency relationship between distant pixels is obtained first through a nonlocal module to extract richer feature representations. And then, a learnable soft class center is proposed to balance the supervised contrastive loss and reduce the impact of long-tailed data on feature learning. For efficiency, a logit adjustment strategy is adopted to correct the bias caused by the different label distributions between the training and test sets and obtain a classifier that is more suitable for long-tailed data. Finally, extensive experiments are conducted on two benchmark datasets, the long-tailed CIFAR and the large-scale real-world iNaturalist 2018, both of which have imbalanced label distributions. The experimental results show that the proposed NHN model is efficient and promising.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
心理咨熊师完成签到,获得积分10
刚刚
刚刚
刚刚
1秒前
竞鹤应助办法总比困难多采纳,获得10
1秒前
1秒前
fh完成签到,获得积分20
1秒前
Ayao完成签到,获得积分10
1秒前
walongjushi发布了新的文献求助10
1秒前
席松完成签到,获得积分10
1秒前
chelsea完成签到,获得积分10
1秒前
2秒前
akion完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
3秒前
library2025完成签到,获得积分10
3秒前
Paul完成签到,获得积分10
3秒前
认真雅阳完成签到 ,获得积分10
4秒前
科目三应助xiaofeifantasy采纳,获得10
4秒前
4秒前
细心的傥发布了新的文献求助10
4秒前
benmao_mogu完成签到,获得积分10
4秒前
4秒前
风吹麦田应助zmz采纳,获得50
4秒前
czz完成签到,获得积分10
4秒前
pluto应助江畔无言暮垂柳采纳,获得10
4秒前
周em12_完成签到,获得积分10
5秒前
yaya发布了新的文献求助10
5秒前
星辰大海应助倦鸟余花采纳,获得10
5秒前
Dan发布了新的文献求助10
5秒前
外星人完成签到,获得积分10
5秒前
小马甲应助zch采纳,获得10
5秒前
香蕉觅云应助xzy采纳,获得10
6秒前
开心的鹅发布了新的文献求助10
6秒前
闪闪含灵完成签到,获得积分10
6秒前
6秒前
6秒前
wls完成签到 ,获得积分10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5574114
求助须知:如何正确求助?哪些是违规求助? 4660331
关于积分的说明 14729315
捐赠科研通 4600225
什么是DOI,文献DOI怎么找? 2524740
邀请新用户注册赠送积分活动 1495018
关于科研通互助平台的介绍 1465034