High‐Performance Organic Electrochemical Transistors Achieved by Optimizing Structural and Energetic Ordering of Diketopyrrolopyrrole‐Based Polymers

材料科学 侧链 聚合物 结晶度 层状结构 离子键合 电化学 有机场效应晶体管 电容 晶体管 化学工程 纳米技术 光电子学 复合材料 电极 场效应晶体管 离子 有机化学 化学 物理化学 物理 电压 量子力学 工程类
作者
Il‐Young Jo,Da-Hyun Jeong,Yong-Tae Moon,Dongchan Lee,Seungjin Lee,Jun‐Gyu Choi,Donghyeon Nam,Ji Hwan Kim,Jinhan Cho,Shinuk Cho,Dong‐Yu Kim,Hyungju Ahn,Bumjoon J. Kim,Myung‐Han Yoon
出处
期刊:Advanced Materials [Wiley]
卷期号:36 (4) 被引量:4
标识
DOI:10.1002/adma.202307402
摘要

Abstract For optimizing steady‐state performance in organic electrochemical transistors (OECTs), both molecular design and structural alignment approaches must work in tandem to minimize energetic and microstructural disorders in polymeric mixed ionic–electronic conductor films. Herein, a series of poly(diketopyrrolopyrrole)s bearing various lengths of aliphatic–glycol hybrid side chains (PDPP‐ m EG; m = 2–5) is developed to achieve high‐performance p‐type OECTs. PDPP‐4EG polymer with the optimized length of side chains exhibits excellent crystallinity owing to enhanced lamellar and backbone interactions. Furthermore, the improved structural ordering in PDPP‐4EG films significantly decreases trap state density and energetic disorder. Consequently, PDPP‐4EG‐based OECT devices produce a mobility–volumetric capacitance product ([ µC *]) of 702 F V −1 cm −1 s −1 and a hole mobility of 6.49 ± 0.60 cm 2 V −1 s −1 . Finally, for achieving the optimal structural ordering along the OECT channel direction, a floating film transfer method is employed to reinforce the unidirectional orientation of polymer chains, leading to a substantially increased figure‐of‐merit [ µC *] to over 800 F V −1 cm −1 s −1 . The research demonstrates the importance of side chain engineering of polymeric mixed ionic–electronic conductors in conjunction with their anisotropic microstructural optimization to maximize OECT characteristics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
威武诺言发布了新的文献求助10
刚刚
科研通AI5应助孙二二采纳,获得10
刚刚
刚刚
英姑应助rookie_b0采纳,获得10
1秒前
毛慢慢发布了新的文献求助10
1秒前
123完成签到,获得积分10
1秒前
kangkang完成签到,获得积分10
2秒前
丘比特应助东风第一枝采纳,获得10
2秒前
2秒前
丰知然应助normankasimodo采纳,获得10
3秒前
黑森林发布了新的文献求助30
3秒前
hu970发布了新的文献求助10
3秒前
3秒前
俭朴夜雪发布了新的文献求助30
3秒前
林上草应助lzj001983采纳,获得10
3秒前
小白完成签到,获得积分20
3秒前
药疯了完成签到,获得积分20
4秒前
桐桐应助123采纳,获得10
4秒前
风中寄云发布了新的文献求助10
4秒前
buuyoo发布了新的文献求助10
4秒前
zjudxn发布了新的文献求助10
4秒前
春夏爱科研完成签到,获得积分10
5秒前
飞翔的西红柿完成签到,获得积分10
5秒前
xzy完成签到,获得积分10
5秒前
L.发布了新的文献求助20
6秒前
Verdigris完成签到,获得积分10
7秒前
cindy完成签到,获得积分10
7秒前
研友_VZG7GZ应助愉快彩虹采纳,获得10
7秒前
金色热浪完成签到 ,获得积分10
7秒前
快去读文献完成签到,获得积分20
7秒前
斯文静曼完成签到,获得积分10
7秒前
7秒前
7秒前
拼搏思卉关注了科研通微信公众号
8秒前
8秒前
liudiqiu应助酷酷的起眸采纳,获得10
8秒前
研友_8yN60L发布了新的文献求助10
8秒前
所所应助VDC采纳,获得10
8秒前
xxq发布了新的文献求助30
8秒前
xzy发布了新的文献求助20
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759