Mammography Breast Cancer Screening Triage Using Deep Learning: A UK Retrospective Study

医学 急诊分诊台 乳腺摄影术 回顾性队列研究 工作量 乳腺癌筛查 置信区间 乳腺癌 癌症 急诊医学 内科学 计算机科学 操作系统
作者
Sarah Hickman,Nicholas Roy Payne,R. Black,Yuan Huang,Andrew N. Priest,Sue Hudson,Bahman Kasmai,Arne Juette,Muzna Nanaa,Muhammad Iqbal Aniq,Anna Sienko,Fiona J. Gilbert
出处
期刊:Radiology [Radiological Society of North America]
卷期号:309 (2) 被引量:8
标识
DOI:10.1148/radiol.231173
摘要

Background Breast screening enables early detection of cancers; however, most women have normal mammograms, resulting in repetitive and resource-intensive reading tasks. Purpose To investigate if deep learning (DL) algorithms can be used to triage mammograms by identifying normal results to reduce workload or flag cancers that may be overlooked. Materials and Methods In this retrospective study, three commercial DL algorithms were investigated using consecutive mammograms from two UK Breast Screening Program sites from January 2015 to December 2017 and January 2017 to December 2018 on devices from two mammography vendors. Normal mammograms with a 3-year follow-up and histopathologically proven cancer detected at screening, the subsequent round, or in the 3-year interval were included. Two algorithm thresholds were set: in scenario A, 99.0% sensitivity for rule-out triage to a lone reader, and in scenario B, approximately 1.0% additional recall providing a rule-in triage for further assessment. Both thresholds were then applied to the screening workflow in scenario C. The sensitivity and specificity were used to assess the overall predictive performance of each DL algorithm. Results The data set comprised 78 849 patients (median age, 59 years [IQR, 53-63 years]) and 887 screening-detected, 439 interval, and 688 subsequent screening round-detected cancers. In scenario A (rule-out triage), models DL-1, DL-2, and DL-3 triaged 35.0% (27 565 of 78 849), 53.2% (41 937 of 78 849), and 55.6% (43 869 of 78 849) of mammograms, respectively, with 0.0% (0 of 887) to 0.1% (one of 887) of screening-detected cancers undetected. In scenario B, DL algorithms triaged in 4.6% (20 of 439) to 8.2% (36 of 439) of interval and 5.2% (36 of 688) to 6.1% (42 of 688) of subsequent-round cancers when applied after the routine double-reading workflow. Combining both approaches in scenario C resulted in an overall noninferior specificity (difference, -0.9%; P < .001) and superior sensitivity (difference, 2.7%; P < .001) for the adaptive workflow compared with routine double reading for all three algorithms. Conclusion Rule-out and rule-in DL-adapted triage workflows can improve the efficiency and efficacy of mammography breast cancer screening. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Nishikawa and Lu in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yang完成签到,获得积分10
1秒前
1秒前
xiaowen完成签到,获得积分10
3秒前
乐陶陶完成签到,获得积分10
5秒前
小云朵完成签到,获得积分10
5秒前
970465242@qq.com完成签到,获得积分10
6秒前
Alily完成签到,获得积分10
7秒前
infj完成签到,获得积分10
7秒前
执着以云完成签到 ,获得积分10
7秒前
7秒前
笑点低一手完成签到,获得积分10
8秒前
未闻完成签到,获得积分10
8秒前
鑫儿宝完成签到,获得积分20
8秒前
喜洋洋完成签到,获得积分10
9秒前
光亮妙之完成签到,获得积分10
9秒前
10秒前
11秒前
高天雨完成签到 ,获得积分10
12秒前
寻道图强应助HJJ采纳,获得60
12秒前
Dou完成签到,获得积分10
12秒前
superspace完成签到,获得积分10
13秒前
任性起眸完成签到,获得积分10
13秒前
我要发十篇sci完成签到 ,获得积分10
13秒前
ZSmile发布了新的文献求助10
14秒前
LC完成签到,获得积分10
15秒前
独特的土豆完成签到,获得积分10
15秒前
15秒前
独特的凝云完成签到 ,获得积分10
16秒前
wanci应助huangr123采纳,获得10
16秒前
顾矜应助LI采纳,获得10
16秒前
右旋王小二完成签到,获得积分10
17秒前
khll发布了新的文献求助10
18秒前
attilio完成签到,获得积分10
18秒前
善学以致用应助Bismarck采纳,获得10
19秒前
19秒前
我刚上小学完成签到,获得积分10
20秒前
水木飞雪完成签到,获得积分10
21秒前
22秒前
cccc发布了新的文献求助10
22秒前
绿麦盲区完成签到,获得积分10
23秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158860
求助须知:如何正确求助?哪些是违规求助? 2810040
关于积分的说明 7885599
捐赠科研通 2468890
什么是DOI,文献DOI怎么找? 1314424
科研通“疑难数据库(出版商)”最低求助积分说明 630616
版权声明 602012