Mammography Breast Cancer Screening Triage Using Deep Learning: A UK Retrospective Study

医学 急诊分诊台 乳腺摄影术 回顾性队列研究 工作量 乳腺癌筛查 置信区间 乳腺癌 癌症 急诊医学 内科学 计算机科学 操作系统
作者
Sarah Hickman,Nicholas Roy Payne,R. Black,Yuan Huang,Andrew N. Priest,Sue Hudson,Bahman Kasmai,Arne Juette,Muzna Nanaa,Muhammad Iqbal Aniq,Anna Sienko,Fiona J. Gilbert
出处
期刊:Radiology [Radiological Society of North America]
卷期号:309 (2) 被引量:8
标识
DOI:10.1148/radiol.231173
摘要

Background Breast screening enables early detection of cancers; however, most women have normal mammograms, resulting in repetitive and resource-intensive reading tasks. Purpose To investigate if deep learning (DL) algorithms can be used to triage mammograms by identifying normal results to reduce workload or flag cancers that may be overlooked. Materials and Methods In this retrospective study, three commercial DL algorithms were investigated using consecutive mammograms from two UK Breast Screening Program sites from January 2015 to December 2017 and January 2017 to December 2018 on devices from two mammography vendors. Normal mammograms with a 3-year follow-up and histopathologically proven cancer detected at screening, the subsequent round, or in the 3-year interval were included. Two algorithm thresholds were set: in scenario A, 99.0% sensitivity for rule-out triage to a lone reader, and in scenario B, approximately 1.0% additional recall providing a rule-in triage for further assessment. Both thresholds were then applied to the screening workflow in scenario C. The sensitivity and specificity were used to assess the overall predictive performance of each DL algorithm. Results The data set comprised 78 849 patients (median age, 59 years [IQR, 53-63 years]) and 887 screening-detected, 439 interval, and 688 subsequent screening round-detected cancers. In scenario A (rule-out triage), models DL-1, DL-2, and DL-3 triaged 35.0% (27 565 of 78 849), 53.2% (41 937 of 78 849), and 55.6% (43 869 of 78 849) of mammograms, respectively, with 0.0% (0 of 887) to 0.1% (one of 887) of screening-detected cancers undetected. In scenario B, DL algorithms triaged in 4.6% (20 of 439) to 8.2% (36 of 439) of interval and 5.2% (36 of 688) to 6.1% (42 of 688) of subsequent-round cancers when applied after the routine double-reading workflow. Combining both approaches in scenario C resulted in an overall noninferior specificity (difference, -0.9%; P < .001) and superior sensitivity (difference, 2.7%; P < .001) for the adaptive workflow compared with routine double reading for all three algorithms. Conclusion Rule-out and rule-in DL-adapted triage workflows can improve the efficiency and efficacy of mammography breast cancer screening. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Nishikawa and Lu in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无奈满天发布了新的文献求助10
刚刚
1秒前
MADKAI发布了新的文献求助10
1秒前
1秒前
贪玩丸子完成签到,获得积分10
1秒前
神勇的雅香应助liutaili采纳,获得10
2秒前
KSGGS完成签到,获得积分10
2秒前
YANG关注了科研通微信公众号
2秒前
3秒前
3秒前
3秒前
99发布了新的文献求助10
4秒前
4秒前
科研通AI5应助qi采纳,获得10
4秒前
乐乐发布了新的文献求助10
5秒前
铸一字错发布了新的文献求助10
5秒前
受伤书文完成签到,获得积分10
6秒前
Yvonne发布了新的文献求助10
6秒前
6秒前
温柔的十三完成签到,获得积分10
6秒前
Ll发布了新的文献求助10
7秒前
nikai发布了新的文献求助10
7秒前
圣晟胜发布了新的文献求助10
7秒前
大个应助科研通管家采纳,获得10
7秒前
7秒前
田様应助科研通管家采纳,获得10
7秒前
香蕉觅云应助科研通管家采纳,获得10
7秒前
李爱国应助科研通管家采纳,获得10
7秒前
Leif应助科研通管家采纳,获得10
8秒前
桐桐应助科研通管家采纳,获得10
8秒前
Owen应助科研通管家采纳,获得10
8秒前
8秒前
深情安青应助科研通管家采纳,获得10
8秒前
shouyu29应助科研通管家采纳,获得10
8秒前
8秒前
小金应助科研通管家采纳,获得20
8秒前
牛逼的昂完成签到,获得积分10
8秒前
muzi给muzi的求助进行了留言
8秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759