清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Mammography Breast Cancer Screening Triage Using Deep Learning: A UK Retrospective Study

医学 急诊分诊台 乳腺摄影术 回顾性队列研究 工作量 乳腺癌筛查 置信区间 乳腺癌 癌症 急诊医学 内科学 计算机科学 操作系统
作者
Sarah Hickman,Nicholas Roy Payne,Richard T Black,Yuan Huang,Andrew N. Priest,Sue Hudson,Bahman Kasmai,Arne Juette,Muzna Nanaa,Muhammad Iqbal Aniq,Anna Sienko,Fiona J. Gilbert
出处
期刊:Radiology [Radiological Society of North America]
卷期号:309 (2) 被引量:17
标识
DOI:10.1148/radiol.231173
摘要

Background Breast screening enables early detection of cancers; however, most women have normal mammograms, resulting in repetitive and resource-intensive reading tasks. Purpose To investigate if deep learning (DL) algorithms can be used to triage mammograms by identifying normal results to reduce workload or flag cancers that may be overlooked. Materials and Methods In this retrospective study, three commercial DL algorithms were investigated using consecutive mammograms from two UK Breast Screening Program sites from January 2015 to December 2017 and January 2017 to December 2018 on devices from two mammography vendors. Normal mammograms with a 3-year follow-up and histopathologically proven cancer detected at screening, the subsequent round, or in the 3-year interval were included. Two algorithm thresholds were set: in scenario A, 99.0% sensitivity for rule-out triage to a lone reader, and in scenario B, approximately 1.0% additional recall providing a rule-in triage for further assessment. Both thresholds were then applied to the screening workflow in scenario C. The sensitivity and specificity were used to assess the overall predictive performance of each DL algorithm. Results The data set comprised 78 849 patients (median age, 59 years [IQR, 53-63 years]) and 887 screening-detected, 439 interval, and 688 subsequent screening round-detected cancers. In scenario A (rule-out triage), models DL-1, DL-2, and DL-3 triaged 35.0% (27 565 of 78 849), 53.2% (41 937 of 78 849), and 55.6% (43 869 of 78 849) of mammograms, respectively, with 0.0% (0 of 887) to 0.1% (one of 887) of screening-detected cancers undetected. In scenario B, DL algorithms triaged in 4.6% (20 of 439) to 8.2% (36 of 439) of interval and 5.2% (36 of 688) to 6.1% (42 of 688) of subsequent-round cancers when applied after the routine double-reading workflow. Combining both approaches in scenario C resulted in an overall noninferior specificity (difference, -0.9%; P < .001) and superior sensitivity (difference, 2.7%; P < .001) for the adaptive workflow compared with routine double reading for all three algorithms. Conclusion Rule-out and rule-in DL-adapted triage workflows can improve the efficiency and efficacy of mammography breast cancer screening. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Nishikawa and Lu in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
14秒前
老石完成签到 ,获得积分10
22秒前
23秒前
宇文非笑完成签到 ,获得积分10
32秒前
34秒前
着急的松发布了新的文献求助10
38秒前
着急的松完成签到,获得积分10
1分钟前
1分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
深情安青应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
beastieboy完成签到,获得积分20
2分钟前
量子星尘发布了新的文献求助10
2分钟前
3分钟前
cym发布了新的文献求助10
3分钟前
彭于晏应助Xuancheng_SINH采纳,获得10
3分钟前
li给li的求助进行了留言
3分钟前
3分钟前
cym关注了科研通微信公众号
3分钟前
Xuancheng_SINH完成签到,获得积分20
3分钟前
努力努力再努力完成签到,获得积分10
3分钟前
柚子完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
CherylZhao完成签到,获得积分10
4分钟前
迷茫的一代完成签到,获得积分10
4分钟前
4分钟前
充电宝应助科研通管家采纳,获得10
4分钟前
LaFee完成签到,获得积分10
4分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
alexlpb完成签到,获得积分0
6分钟前
Owen应助科研通管家采纳,获得10
6分钟前
yindi1991完成签到 ,获得积分10
6分钟前
量子星尘发布了新的文献求助10
6分钟前
非洲大象完成签到,获得积分10
6分钟前
RAIN发布了新的文献求助10
7分钟前
7分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008356
求助须知:如何正确求助?哪些是违规求助? 3548096
关于积分的说明 11298684
捐赠科研通 3282900
什么是DOI,文献DOI怎么找? 1810249
邀请新用户注册赠送积分活动 885975
科研通“疑难数据库(出版商)”最低求助积分说明 811188