Mammography Breast Cancer Screening Triage Using Deep Learning: A UK Retrospective Study

医学 急诊分诊台 乳腺摄影术 回顾性队列研究 工作量 乳腺癌筛查 置信区间 乳腺癌 癌症 急诊医学 内科学 计算机科学 操作系统
作者
Sarah Hickman,Nicholas Roy Payne,Richard T Black,Yuan Huang,Andrew N. Priest,Sue Hudson,Bahman Kasmai,Arne Juette,Muzna Nanaa,Muhammad Iqbal Aniq,Anna Sienko,Fiona J. Gilbert
出处
期刊:Radiology [Radiological Society of North America]
卷期号:309 (2) 被引量:17
标识
DOI:10.1148/radiol.231173
摘要

Background Breast screening enables early detection of cancers; however, most women have normal mammograms, resulting in repetitive and resource-intensive reading tasks. Purpose To investigate if deep learning (DL) algorithms can be used to triage mammograms by identifying normal results to reduce workload or flag cancers that may be overlooked. Materials and Methods In this retrospective study, three commercial DL algorithms were investigated using consecutive mammograms from two UK Breast Screening Program sites from January 2015 to December 2017 and January 2017 to December 2018 on devices from two mammography vendors. Normal mammograms with a 3-year follow-up and histopathologically proven cancer detected at screening, the subsequent round, or in the 3-year interval were included. Two algorithm thresholds were set: in scenario A, 99.0% sensitivity for rule-out triage to a lone reader, and in scenario B, approximately 1.0% additional recall providing a rule-in triage for further assessment. Both thresholds were then applied to the screening workflow in scenario C. The sensitivity and specificity were used to assess the overall predictive performance of each DL algorithm. Results The data set comprised 78 849 patients (median age, 59 years [IQR, 53-63 years]) and 887 screening-detected, 439 interval, and 688 subsequent screening round-detected cancers. In scenario A (rule-out triage), models DL-1, DL-2, and DL-3 triaged 35.0% (27 565 of 78 849), 53.2% (41 937 of 78 849), and 55.6% (43 869 of 78 849) of mammograms, respectively, with 0.0% (0 of 887) to 0.1% (one of 887) of screening-detected cancers undetected. In scenario B, DL algorithms triaged in 4.6% (20 of 439) to 8.2% (36 of 439) of interval and 5.2% (36 of 688) to 6.1% (42 of 688) of subsequent-round cancers when applied after the routine double-reading workflow. Combining both approaches in scenario C resulted in an overall noninferior specificity (difference, -0.9%; P < .001) and superior sensitivity (difference, 2.7%; P < .001) for the adaptive workflow compared with routine double reading for all three algorithms. Conclusion Rule-out and rule-in DL-adapted triage workflows can improve the efficiency and efficacy of mammography breast cancer screening. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Nishikawa and Lu in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yi完成签到,获得积分10
1秒前
郝老头完成签到,获得积分0
2秒前
王继完成签到,获得积分10
3秒前
卡片完成签到,获得积分10
4秒前
sheep完成签到,获得积分10
4秒前
焦明准完成签到,获得积分10
5秒前
胡思乱想完成签到,获得积分10
7秒前
hahaha6789y完成签到,获得积分10
7秒前
量子咸鱼K完成签到,获得积分10
8秒前
cl完成签到,获得积分10
10秒前
秦含光完成签到,获得积分10
10秒前
maybe完成签到,获得积分10
11秒前
hahaha2完成签到,获得积分10
11秒前
简奥斯汀完成签到 ,获得积分10
12秒前
徐彬荣完成签到,获得积分10
12秒前
NameCYQ完成签到,获得积分10
14秒前
Adamcssy19完成签到,获得积分10
14秒前
PaperCrane完成签到,获得积分10
14秒前
hahaha1完成签到,获得积分10
14秒前
霡霂完成签到,获得积分10
14秒前
殷勤的紫槐应助科研通管家采纳,获得200
15秒前
orixero应助科研通管家采纳,获得10
15秒前
徐徐完成签到 ,获得积分10
15秒前
茄子完成签到 ,获得积分10
23秒前
盼盼527完成签到 ,获得积分10
30秒前
chen完成签到 ,获得积分10
31秒前
怕黑的金鱼关注了科研通微信公众号
40秒前
噗噗完成签到 ,获得积分10
44秒前
mojito完成签到 ,获得积分10
46秒前
萧水白完成签到,获得积分10
56秒前
Fiona完成签到 ,获得积分10
56秒前
59秒前
晓晓发布了新的文献求助10
1分钟前
1分钟前
不会学习的小郭完成签到 ,获得积分10
1分钟前
花落无声完成签到 ,获得积分10
1分钟前
惜曦完成签到 ,获得积分10
1分钟前
yanaaa完成签到,获得积分10
1分钟前
怕黑的金鱼完成签到,获得积分10
1分钟前
yanaaa发布了新的文献求助10
1分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5212175
求助须知:如何正确求助?哪些是违规求助? 4388435
关于积分的说明 13663849
捐赠科研通 4248864
什么是DOI,文献DOI怎么找? 2331208
邀请新用户注册赠送积分活动 1328931
关于科研通互助平台的介绍 1282248