反向
单层
杰纳斯
凝聚态物理
电场
拉希巴效应
物理
自旋(空气动力学)
自旋电子学
材料科学
半导体
能量(信号处理)
纳米技术
量子力学
铁磁性
热力学
数学
几何学
作者
Qikun Tian,Puxuan Li,Jinghui Wei,Ziyu Xing,Guangzhao Qin,Zhenzhen Qin
出处
期刊:Physical review
日期:2023-09-14
卷期号:108 (11)
被引量:8
标识
DOI:10.1103/physrevb.108.115130
摘要
The search for optimal Rashba semiconductors with large Rashba constants, strong electric field responses, and potential thermoelectric properties is pivotal for spin field-effect transistors (SFETs) and Rashba thermoelectric devices. Herein, we employ first-principles calculations to explore the intrinsic Rashba spin splitting in a series of two-dimensional (2D) $XY{Z}_{2}$ (X, $Y=\mathrm{Si}$, Ge, Sn; $X\ensuremath{\ne}Y$; $Z=\mathrm{P}$, As, Sb, Bi) monolayers via unnatural inverse Janus structural design. Instead of common Janus-type Rashba systems, the $\mathrm{SiSn}{\mathrm{Sb}}_{2}$ and $\mathrm{GeSn}{\mathrm{Sb}}_{2}$ monolayers within inverse Janus structures are first predicted as ideal Rashba systems with isolated spin-splitting bands near the Fermi level, and the Rashba constants ${\ensuremath{\alpha}}_{\mathrm{R}}$ are calculated as 0.94 and $1.27\phantom{\rule{0.16em}{0ex}}\mathrm{eV}\phantom{\rule{0.16em}{0ex}}\AA{}$, respectively. More importantly, the Rashba effect in such $\mathrm{SiSn}{\mathrm{Sb}}_{2}$ and $\mathrm{GeSn}{\mathrm{Sb}}_{2}$ monolayers can be more efficiently modulated by the external electric field compared to the biaxial or uniaxial strain, especially with $\mathrm{GeSn}{\mathrm{Sb}}_{2}$ monolayer exhibiting a strong electric field response rate of $1.34\phantom{\rule{0.16em}{0ex}}\mathrm{e}{\AA{}}^{2}$, leading to a short channel length, $L=64\phantom{\rule{0.16em}{0ex}}\mathrm{nm}$. Additionally, owing to the inapplicability of work function and potential energy in assessing built-in electric field $({E}_{in})$ in inverse Janus $\mathrm{SiSn}{\mathrm{Sb}}_{2}$ and $\mathrm{GeSn}{\mathrm{Sb}}_{2}$ structures, we further propose an effective method to characterize ${E}_{in}$ through a view of fundamental charge transfer to approximately quantize the ${\ensuremath{\alpha}}_{\mathrm{R}}$ and its variation under an external electric field. Our work not only proposes the $\mathrm{GeSn}{\mathrm{Sb}}_{2}$ monolayer acting as a promising multifunctional material for potential applications in SFETs and Rashba thermoelectric devices but also inspires future research to introduce Rashba spin splitting in 2D materials through inverse Janus design.
科研通智能强力驱动
Strongly Powered by AbleSci AI