Power transformer fault diagnosis based on a self-strengthening offline pre-training model

计算机科学 变压器 人工智能 编码器 残余物 卷积神经网络 人工神经网络 机器学习 模式识别(心理学) 数据挖掘 算法 电压 量子力学 操作系统 物理
作者
Mingwei Zhong,Siqi Yi,Jingmin Fan,Yikang Zhang,Guanglin He,Yunfei Cao,Lutao Feng,Zhichao Tan,Wenjun Mo
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:126: 107142-107142 被引量:10
标识
DOI:10.1016/j.engappai.2023.107142
摘要

Accurate transformer fault diagnosis is crucial for maintaining the power system stability. Due the complex operation condition of the transformer, its faults are with the characteristic of multi-class faults, class-imbalance, and limited diagnosis data of availability. Additionally, some fault samples are only with overheating or discharge labels when collected, it is a challenge that how to how to use these samples. To address these issues, in this paper, a novel transformer fault diagnosis method based on a hybrid model of Res-Variational-Auto-Encoder (ResVAE) and ensemble learning (EL) model is proposed. Through a self-strengthening strategy, fault characteristics are extracted category-by-category by using a residual convolutional neural network, and low dimensional characteristics are mapped into characteristic fusion samples by VAE. Based on this strategy, an offline pre-training model is built based on ResVAE and EL. The hybrid model can obtain more information from offline source domain, enabling the EL to diagnose multiple fault types as well as undetermined faults. Considering 11 categories of imbalanced classification scenarios with limited sample sizes, the comparison is made between eight expansion and six diagnosis algorithms. The results show that the offline pre-training EL model increased the diagnostic accuracy up to 11.224% compared with tradition ratios method. The ResVAE-EL model achieves the highest diagnostic accuracy of 91.011%, which is 10.112% higher than that of the single offline pre-training model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助心灵美千易采纳,获得10
1秒前
研友_VZG7GZ应助珍妮采纳,获得10
1秒前
1秒前
Joey发布了新的文献求助10
1秒前
1秒前
sss发布了新的文献求助10
1秒前
哈哈发布了新的文献求助10
2秒前
FENGHUI完成签到,获得积分20
2秒前
2秒前
洁净平卉完成签到,获得积分10
2秒前
2秒前
2秒前
彭于晏应助卢文强采纳,获得10
3秒前
bob发布了新的文献求助30
3秒前
NK001发布了新的文献求助10
3秒前
无花果应助LIUJIALIANG采纳,获得10
3秒前
Akim应助再学一分钟采纳,获得10
3秒前
3秒前
YWXO发布了新的文献求助10
3秒前
归途发布了新的文献求助10
3秒前
CodeCraft应助不打游戏_采纳,获得10
4秒前
orixero应助hzy采纳,获得10
5秒前
5秒前
大个应助怕黑海冬采纳,获得10
5秒前
体贴的之柔完成签到,获得积分10
6秒前
6秒前
nn完成签到,获得积分10
6秒前
科研通AI6应助Yy采纳,获得10
6秒前
nannan完成签到,获得积分20
7秒前
7秒前
7秒前
渤大小mn发布了新的文献求助10
7秒前
8秒前
8秒前
starrism发布了新的文献求助10
8秒前
隐形曼青应助谦让的含海采纳,获得10
8秒前
沐沐完成签到,获得积分10
8秒前
云溪发布了新的文献求助10
9秒前
Dimples完成签到,获得积分10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625453
求助须知:如何正确求助?哪些是违规求助? 4711271
关于积分的说明 14954468
捐赠科研通 4779371
什么是DOI,文献DOI怎么找? 2553732
邀请新用户注册赠送积分活动 1515665
关于科研通互助平台的介绍 1475853