Power transformer fault diagnosis based on a self-strengthening offline pre-training model

计算机科学 变压器 人工智能 编码器 残余物 卷积神经网络 人工神经网络 机器学习 模式识别(心理学) 数据挖掘 算法 电压 量子力学 操作系统 物理
作者
Mingwei Zhong,Siqi Yi,Jingmin Fan,Yikang Zhang,Guanglin He,Yunfei Cao,Lutao Feng,Zhichao Tan,Wenjun Mo
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:126: 107142-107142 被引量:10
标识
DOI:10.1016/j.engappai.2023.107142
摘要

Accurate transformer fault diagnosis is crucial for maintaining the power system stability. Due the complex operation condition of the transformer, its faults are with the characteristic of multi-class faults, class-imbalance, and limited diagnosis data of availability. Additionally, some fault samples are only with overheating or discharge labels when collected, it is a challenge that how to how to use these samples. To address these issues, in this paper, a novel transformer fault diagnosis method based on a hybrid model of Res-Variational-Auto-Encoder (ResVAE) and ensemble learning (EL) model is proposed. Through a self-strengthening strategy, fault characteristics are extracted category-by-category by using a residual convolutional neural network, and low dimensional characteristics are mapped into characteristic fusion samples by VAE. Based on this strategy, an offline pre-training model is built based on ResVAE and EL. The hybrid model can obtain more information from offline source domain, enabling the EL to diagnose multiple fault types as well as undetermined faults. Considering 11 categories of imbalanced classification scenarios with limited sample sizes, the comparison is made between eight expansion and six diagnosis algorithms. The results show that the offline pre-training EL model increased the diagnostic accuracy up to 11.224% compared with tradition ratios method. The ResVAE-EL model achieves the highest diagnostic accuracy of 91.011%, which is 10.112% higher than that of the single offline pre-training model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助Guzaiya采纳,获得10
刚刚
gavin完成签到 ,获得积分10
1秒前
飞快的从彤完成签到 ,获得积分20
1秒前
茶米发布了新的文献求助10
2秒前
脱羰甲酸发布了新的文献求助10
3秒前
hhdegf发布了新的文献求助10
5秒前
5秒前
科目三应助ldp采纳,获得10
6秒前
研友_8o5V2n完成签到,获得积分10
7秒前
溜溜梅完成签到,获得积分10
7秒前
花生小铺主人完成签到,获得积分10
8秒前
斯文败类应助llll采纳,获得10
8秒前
8秒前
8秒前
Gumayusi发布了新的文献求助10
9秒前
wxy发布了新的文献求助10
9秒前
Carmen完成签到,获得积分10
10秒前
10秒前
李爱国应助luck采纳,获得10
11秒前
11秒前
细腻荔枝完成签到 ,获得积分10
12秒前
嘟噜嘟噜应助龙王使采纳,获得10
13秒前
13秒前
13秒前
LLX123发布了新的文献求助10
13秒前
14秒前
15秒前
15秒前
wxy发布了新的文献求助10
16秒前
16秒前
16秒前
量子星尘发布了新的文献求助10
17秒前
18秒前
FashionBoy应助茶米采纳,获得10
19秒前
惊蛰发布了新的文献求助10
19秒前
能干数据线完成签到,获得积分20
20秒前
20秒前
Cylair发布了新的文献求助20
20秒前
ldp发布了新的文献求助10
21秒前
阿凡提发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5436097
求助须知:如何正确求助?哪些是违规求助? 4548199
关于积分的说明 14212530
捐赠科研通 4468375
什么是DOI,文献DOI怎么找? 2448993
邀请新用户注册赠送积分活动 1439942
关于科研通互助平台的介绍 1416594