Power transformer fault diagnosis based on a self-strengthening offline pre-training model

计算机科学 变压器 人工智能 编码器 残余物 卷积神经网络 人工神经网络 机器学习 模式识别(心理学) 数据挖掘 算法 电压 量子力学 操作系统 物理
作者
Mingwei Zhong,Siqi Yi,Jingmin Fan,Yikang Zhang,Guanglin He,Yunfei Cao,Lutao Feng,Zhichao Tan,Wenjun Mo
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:126: 107142-107142 被引量:10
标识
DOI:10.1016/j.engappai.2023.107142
摘要

Accurate transformer fault diagnosis is crucial for maintaining the power system stability. Due the complex operation condition of the transformer, its faults are with the characteristic of multi-class faults, class-imbalance, and limited diagnosis data of availability. Additionally, some fault samples are only with overheating or discharge labels when collected, it is a challenge that how to how to use these samples. To address these issues, in this paper, a novel transformer fault diagnosis method based on a hybrid model of Res-Variational-Auto-Encoder (ResVAE) and ensemble learning (EL) model is proposed. Through a self-strengthening strategy, fault characteristics are extracted category-by-category by using a residual convolutional neural network, and low dimensional characteristics are mapped into characteristic fusion samples by VAE. Based on this strategy, an offline pre-training model is built based on ResVAE and EL. The hybrid model can obtain more information from offline source domain, enabling the EL to diagnose multiple fault types as well as undetermined faults. Considering 11 categories of imbalanced classification scenarios with limited sample sizes, the comparison is made between eight expansion and six diagnosis algorithms. The results show that the offline pre-training EL model increased the diagnostic accuracy up to 11.224% compared with tradition ratios method. The ResVAE-EL model achieves the highest diagnostic accuracy of 91.011%, which is 10.112% higher than that of the single offline pre-training model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
流浪应助付研琪采纳,获得10
1秒前
害羞鬼完成签到,获得积分10
1秒前
1秒前
韩麒嘉发布了新的文献求助10
2秒前
zywzyw发布了新的文献求助10
2秒前
2秒前
FashionBoy应助cc采纳,获得10
2秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
3秒前
JiA完成签到,获得积分10
3秒前
小任完成签到,获得积分10
4秒前
果粒橙发布了新的文献求助10
4秒前
斯文败类应助麻辣老妖婆采纳,获得10
4秒前
花飞飞凡发布了新的文献求助10
4秒前
温暖静柏完成签到,获得积分20
5秒前
5秒前
科研通AI6应助myt采纳,获得10
5秒前
zhanng发布了新的文献求助10
6秒前
奇遇里发布了新的文献求助10
6秒前
李健的小迷弟应助承乐采纳,获得30
7秒前
小马甲应助Jian采纳,获得10
7秒前
卢秋宇完成签到,获得积分20
8秒前
叶子完成签到,获得积分10
8秒前
瞿琼瑶发布了新的文献求助80
9秒前
9秒前
苦苦发布了新的文献求助10
9秒前
9秒前
10秒前
华仔应助多情以山采纳,获得10
10秒前
奔跑西木发布了新的文献求助10
10秒前
10秒前
雨天有伞完成签到,获得积分10
11秒前
ZOLEI完成签到,获得积分10
11秒前
12秒前
超级万声发布了新的文献求助30
12秒前
执着蓝发布了新的文献求助10
12秒前
迷路巧曼完成签到,获得积分20
13秒前
害羞鬼发布了新的文献求助10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836