Power transformer fault diagnosis based on a self-strengthening offline pre-training model

计算机科学 变压器 人工智能 编码器 残余物 卷积神经网络 人工神经网络 机器学习 模式识别(心理学) 数据挖掘 算法 电压 量子力学 操作系统 物理
作者
Mingwei Zhong,Siqi Yi,Jingmin Fan,Yikang Zhang,Guanglin He,Yunfei Cao,Lutao Feng,Zhichao Tan,Wenjun Mo
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:126: 107142-107142 被引量:10
标识
DOI:10.1016/j.engappai.2023.107142
摘要

Accurate transformer fault diagnosis is crucial for maintaining the power system stability. Due the complex operation condition of the transformer, its faults are with the characteristic of multi-class faults, class-imbalance, and limited diagnosis data of availability. Additionally, some fault samples are only with overheating or discharge labels when collected, it is a challenge that how to how to use these samples. To address these issues, in this paper, a novel transformer fault diagnosis method based on a hybrid model of Res-Variational-Auto-Encoder (ResVAE) and ensemble learning (EL) model is proposed. Through a self-strengthening strategy, fault characteristics are extracted category-by-category by using a residual convolutional neural network, and low dimensional characteristics are mapped into characteristic fusion samples by VAE. Based on this strategy, an offline pre-training model is built based on ResVAE and EL. The hybrid model can obtain more information from offline source domain, enabling the EL to diagnose multiple fault types as well as undetermined faults. Considering 11 categories of imbalanced classification scenarios with limited sample sizes, the comparison is made between eight expansion and six diagnosis algorithms. The results show that the offline pre-training EL model increased the diagnostic accuracy up to 11.224% compared with tradition ratios method. The ResVAE-EL model achieves the highest diagnostic accuracy of 91.011%, which is 10.112% higher than that of the single offline pre-training model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
优雅千风发布了新的文献求助10
刚刚
悠悠完成签到,获得积分10
1秒前
2秒前
3秒前
,,发布了新的文献求助10
3秒前
3秒前
加玉完成签到 ,获得积分10
3秒前
呆萌的康完成签到,获得积分10
3秒前
嘻嘻哈哈应助理塘大学士采纳,获得10
4秒前
FashionBoy应助冷傲的大树采纳,获得10
4秒前
4秒前
123发布了新的文献求助10
4秒前
zhaoyaoshi发布了新的文献求助10
5秒前
荔枝凉完成签到,获得积分10
6秒前
在水一方应助AmyHu采纳,获得10
6秒前
文艺谷蓝发布了新的文献求助10
7秒前
7秒前
7秒前
磊2024完成签到,获得积分10
7秒前
9秒前
我见春日明媚完成签到 ,获得积分10
9秒前
9秒前
明理的老四关注了科研通微信公众号
10秒前
10秒前
细心妙菡完成签到 ,获得积分10
10秒前
明明睡不醒完成签到,获得积分10
11秒前
zsy完成签到 ,获得积分10
12秒前
ding应助麝狸猫采纳,获得10
12秒前
14秒前
harmy发布了新的文献求助10
14秒前
14秒前
牧洋人完成签到 ,获得积分10
14秒前
李健应助DYW采纳,获得10
14秒前
w2503完成签到,获得积分10
15秒前
15秒前
两碗牛又面完成签到,获得积分10
15秒前
科研通AI6应助木谦采纳,获得10
15秒前
时间胶囊完成签到,获得积分10
15秒前
YY完成签到 ,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5259868
求助须知:如何正确求助?哪些是违规求助? 4421366
关于积分的说明 13762922
捐赠科研通 4295395
什么是DOI,文献DOI怎么找? 2356893
邀请新用户注册赠送积分活动 1353212
关于科研通互助平台的介绍 1314393