Power transformer fault diagnosis based on a self-strengthening offline pre-training model

计算机科学 变压器 人工智能 编码器 残余物 卷积神经网络 人工神经网络 机器学习 模式识别(心理学) 数据挖掘 算法 电压 量子力学 操作系统 物理
作者
Mingwei Zhong,Siqi Yi,Jingmin Fan,Yikang Zhang,Guanglin He,Yunfei Cao,Lutao Feng,Zhichao Tan,Wenjun Mo
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:126: 107142-107142 被引量:10
标识
DOI:10.1016/j.engappai.2023.107142
摘要

Accurate transformer fault diagnosis is crucial for maintaining the power system stability. Due the complex operation condition of the transformer, its faults are with the characteristic of multi-class faults, class-imbalance, and limited diagnosis data of availability. Additionally, some fault samples are only with overheating or discharge labels when collected, it is a challenge that how to how to use these samples. To address these issues, in this paper, a novel transformer fault diagnosis method based on a hybrid model of Res-Variational-Auto-Encoder (ResVAE) and ensemble learning (EL) model is proposed. Through a self-strengthening strategy, fault characteristics are extracted category-by-category by using a residual convolutional neural network, and low dimensional characteristics are mapped into characteristic fusion samples by VAE. Based on this strategy, an offline pre-training model is built based on ResVAE and EL. The hybrid model can obtain more information from offline source domain, enabling the EL to diagnose multiple fault types as well as undetermined faults. Considering 11 categories of imbalanced classification scenarios with limited sample sizes, the comparison is made between eight expansion and six diagnosis algorithms. The results show that the offline pre-training EL model increased the diagnostic accuracy up to 11.224% compared with tradition ratios method. The ResVAE-EL model achieves the highest diagnostic accuracy of 91.011%, which is 10.112% higher than that of the single offline pre-training model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助ianlaikk采纳,获得10
刚刚
1秒前
Hello应助charint采纳,获得10
2秒前
烟花应助司空三毒采纳,获得20
3秒前
3秒前
3秒前
爆米花应助菜鸟学习采纳,获得10
4秒前
orixero应助矮小的城采纳,获得10
6秒前
科研通AI6应助吴咪采纳,获得10
7秒前
研友_LJGXgn完成签到,获得积分10
7秒前
9秒前
Lucas应助房俊玲采纳,获得30
9秒前
xxfsx应助CKM采纳,获得30
9秒前
9秒前
gyh发布了新的文献求助10
9秒前
10秒前
乐乐应助细心的语蓉采纳,获得10
11秒前
12秒前
长情白柏发布了新的文献求助10
12秒前
科研通AI2S应助晴芷采纳,获得10
12秒前
12秒前
研友_VZG7GZ应助顾大大采纳,获得10
12秒前
吴咪完成签到,获得积分10
13秒前
14秒前
英姑应助hsy采纳,获得10
14秒前
JQKing完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
14秒前
hiding完成签到 ,获得积分10
17秒前
俞事完成签到,获得积分10
17秒前
charint发布了新的文献求助10
17秒前
17秒前
18秒前
大龙哥886应助gyh采纳,获得10
19秒前
junsizzz完成签到,获得积分10
19秒前
20秒前
21秒前
yalin完成签到,获得积分10
21秒前
王金狗完成签到,获得积分10
22秒前
orixero应助junsizzz采纳,获得10
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 600
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425524
求助须知:如何正确求助?哪些是违规求助? 4539563
关于积分的说明 14168635
捐赠科研通 4457118
什么是DOI,文献DOI怎么找? 2444431
邀请新用户注册赠送积分活动 1435362
关于科研通互助平台的介绍 1412800