Power transformer fault diagnosis based on a self-strengthening offline pre-training model

计算机科学 变压器 人工智能 编码器 残余物 卷积神经网络 人工神经网络 机器学习 模式识别(心理学) 数据挖掘 算法 电压 量子力学 操作系统 物理
作者
Mingwei Zhong,Siqi Yi,Jingmin Fan,Yikang Zhang,Guanglin He,Yunfei Cao,Lutao Feng,Zhichao Tan,Wenjun Mo
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:126: 107142-107142 被引量:10
标识
DOI:10.1016/j.engappai.2023.107142
摘要

Accurate transformer fault diagnosis is crucial for maintaining the power system stability. Due the complex operation condition of the transformer, its faults are with the characteristic of multi-class faults, class-imbalance, and limited diagnosis data of availability. Additionally, some fault samples are only with overheating or discharge labels when collected, it is a challenge that how to how to use these samples. To address these issues, in this paper, a novel transformer fault diagnosis method based on a hybrid model of Res-Variational-Auto-Encoder (ResVAE) and ensemble learning (EL) model is proposed. Through a self-strengthening strategy, fault characteristics are extracted category-by-category by using a residual convolutional neural network, and low dimensional characteristics are mapped into characteristic fusion samples by VAE. Based on this strategy, an offline pre-training model is built based on ResVAE and EL. The hybrid model can obtain more information from offline source domain, enabling the EL to diagnose multiple fault types as well as undetermined faults. Considering 11 categories of imbalanced classification scenarios with limited sample sizes, the comparison is made between eight expansion and six diagnosis algorithms. The results show that the offline pre-training EL model increased the diagnostic accuracy up to 11.224% compared with tradition ratios method. The ResVAE-EL model achieves the highest diagnostic accuracy of 91.011%, which is 10.112% higher than that of the single offline pre-training model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
F_ken发布了新的文献求助10
1秒前
块块的加隆满口袋完成签到 ,获得积分10
2秒前
CT民工发布了新的文献求助10
2秒前
受伤冰菱完成签到,获得积分10
3秒前
lingyu完成签到,获得积分10
3秒前
4秒前
南絮发布了新的文献求助10
4秒前
ccc完成签到,获得积分10
4秒前
4秒前
4秒前
武工队队长石青山完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
卷儿w发布了新的文献求助40
7秒前
陆程文发布了新的文献求助10
7秒前
MXG完成签到,获得积分10
7秒前
隐形曼青应助ornot君君采纳,获得10
8秒前
zhulinkin完成签到 ,获得积分10
8秒前
睡醒了发布了新的文献求助10
9秒前
米鼓完成签到 ,获得积分10
10秒前
10秒前
科研发布了新的文献求助30
10秒前
青年才俊发布了新的文献求助30
11秒前
清脆的乌冬面完成签到,获得积分10
11秒前
11秒前
大模型应助芝麻球ii采纳,获得10
11秒前
WANG完成签到 ,获得积分10
11秒前
12秒前
myf完成签到,获得积分20
12秒前
12秒前
taiping发布了新的文献求助10
12秒前
幽悠梦儿完成签到,获得积分10
13秒前
解冰珍完成签到,获得积分10
13秒前
14秒前
无聊的访枫完成签到 ,获得积分10
14秒前
14秒前
斯文败类应助科研通管家采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5097313
求助须知:如何正确求助?哪些是违规求助? 4309783
关于积分的说明 13428428
捐赠科研通 4137300
什么是DOI,文献DOI怎么找? 2266533
邀请新用户注册赠送积分活动 1269654
关于科研通互助平台的介绍 1205978