Power transformer fault diagnosis based on a self-strengthening offline pre-training model

计算机科学 变压器 人工智能 编码器 残余物 卷积神经网络 人工神经网络 机器学习 模式识别(心理学) 数据挖掘 算法 电压 量子力学 操作系统 物理
作者
Mingwei Zhong,Siqi Yi,Jingmin Fan,Yikang Zhang,Guanglin He,Yunfei Cao,Lutao Feng,Zhichao Tan,Wenjun Mo
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:126: 107142-107142 被引量:10
标识
DOI:10.1016/j.engappai.2023.107142
摘要

Accurate transformer fault diagnosis is crucial for maintaining the power system stability. Due the complex operation condition of the transformer, its faults are with the characteristic of multi-class faults, class-imbalance, and limited diagnosis data of availability. Additionally, some fault samples are only with overheating or discharge labels when collected, it is a challenge that how to how to use these samples. To address these issues, in this paper, a novel transformer fault diagnosis method based on a hybrid model of Res-Variational-Auto-Encoder (ResVAE) and ensemble learning (EL) model is proposed. Through a self-strengthening strategy, fault characteristics are extracted category-by-category by using a residual convolutional neural network, and low dimensional characteristics are mapped into characteristic fusion samples by VAE. Based on this strategy, an offline pre-training model is built based on ResVAE and EL. The hybrid model can obtain more information from offline source domain, enabling the EL to diagnose multiple fault types as well as undetermined faults. Considering 11 categories of imbalanced classification scenarios with limited sample sizes, the comparison is made between eight expansion and six diagnosis algorithms. The results show that the offline pre-training EL model increased the diagnostic accuracy up to 11.224% compared with tradition ratios method. The ResVAE-EL model achieves the highest diagnostic accuracy of 91.011%, which is 10.112% higher than that of the single offline pre-training model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
煜琪完成签到,获得积分10
刚刚
欧尼酱完成签到 ,获得积分10
刚刚
万能图书馆应助小陈采纳,获得10
刚刚
Eason完成签到,获得积分10
1秒前
小医发布了新的文献求助10
2秒前
Cellchang完成签到,获得积分20
2秒前
Aman完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
破天富贵玩命追我完成签到 ,获得积分10
5秒前
33完成签到,获得积分10
6秒前
壮观青雪关注了科研通微信公众号
6秒前
7秒前
黄健丰发布了新的文献求助10
7秒前
罗肥肥完成签到,获得积分10
8秒前
压力是多的完成签到,获得积分10
8秒前
9秒前
11秒前
12秒前
Cellchang发布了新的文献求助10
12秒前
娷静完成签到 ,获得积分10
12秒前
感动冰海完成签到 ,获得积分10
12秒前
12秒前
温婉的涫完成签到,获得积分20
12秒前
无极微光应助无风采纳,获得20
13秒前
13秒前
13秒前
完美世界应助萌仔采纳,获得10
14秒前
鲤鱼平安完成签到,获得积分10
14秒前
明亮不弱完成签到 ,获得积分10
15秒前
小陈发布了新的文献求助10
16秒前
科研通AI2S应助威武的之桃采纳,获得10
16秒前
冲破天际完成签到,获得积分20
17秒前
17秒前
long完成签到,获得积分10
17秒前
董倍儿瘦发布了新的文献求助10
18秒前
梅溪湖的提词器完成签到,获得积分10
18秒前
qq完成签到,获得积分10
20秒前
初夏完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603597
求助须知:如何正确求助?哪些是违规求助? 4688619
关于积分的说明 14854949
捐赠科研通 4694087
什么是DOI,文献DOI怎么找? 2540895
邀请新用户注册赠送积分活动 1507124
关于科研通互助平台的介绍 1471806