Power transformer fault diagnosis based on a self-strengthening offline pre-training model

计算机科学 变压器 人工智能 编码器 残余物 卷积神经网络 人工神经网络 机器学习 模式识别(心理学) 数据挖掘 算法 电压 量子力学 操作系统 物理
作者
Mingwei Zhong,Siqi Yi,Jingmin Fan,Yikang Zhang,Guanglin He,Yunfei Cao,Lutao Feng,Zhichao Tan,Wenjun Mo
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:126: 107142-107142 被引量:10
标识
DOI:10.1016/j.engappai.2023.107142
摘要

Accurate transformer fault diagnosis is crucial for maintaining the power system stability. Due the complex operation condition of the transformer, its faults are with the characteristic of multi-class faults, class-imbalance, and limited diagnosis data of availability. Additionally, some fault samples are only with overheating or discharge labels when collected, it is a challenge that how to how to use these samples. To address these issues, in this paper, a novel transformer fault diagnosis method based on a hybrid model of Res-Variational-Auto-Encoder (ResVAE) and ensemble learning (EL) model is proposed. Through a self-strengthening strategy, fault characteristics are extracted category-by-category by using a residual convolutional neural network, and low dimensional characteristics are mapped into characteristic fusion samples by VAE. Based on this strategy, an offline pre-training model is built based on ResVAE and EL. The hybrid model can obtain more information from offline source domain, enabling the EL to diagnose multiple fault types as well as undetermined faults. Considering 11 categories of imbalanced classification scenarios with limited sample sizes, the comparison is made between eight expansion and six diagnosis algorithms. The results show that the offline pre-training EL model increased the diagnostic accuracy up to 11.224% compared with tradition ratios method. The ResVAE-EL model achieves the highest diagnostic accuracy of 91.011%, which is 10.112% higher than that of the single offline pre-training model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
木菁完成签到,获得积分10
1秒前
3秒前
FashionBoy应助龙江游侠采纳,获得10
4秒前
5秒前
5秒前
6秒前
樱满集完成签到,获得积分20
7秒前
樱满集发布了新的文献求助10
10秒前
凉凉应助felix采纳,获得10
10秒前
小圆完成签到,获得积分20
11秒前
orixero应助wyd采纳,获得10
11秒前
11秒前
12秒前
12秒前
泥瓦酱发布了新的文献求助10
12秒前
luoshi94完成签到,获得积分10
13秒前
13秒前
大碗完成签到 ,获得积分10
14秒前
vsoar发布了新的文献求助10
16秒前
龙江游侠发布了新的文献求助10
17秒前
咕咕咕咕咕纯完成签到,获得积分20
17秒前
17秒前
pipi发布了新的文献求助10
18秒前
小碗完成签到 ,获得积分10
20秒前
CYLiu关注了科研通微信公众号
21秒前
25秒前
龙江游侠完成签到,获得积分10
28秒前
28秒前
花开米兰城完成签到,获得积分10
28秒前
斯文败类应助樱满集采纳,获得10
30秒前
30秒前
鉴定为学计算学的完成签到,获得积分10
30秒前
研友_nPPzon完成签到,获得积分10
33秒前
34秒前
天天快乐应助泥瓦酱采纳,获得10
34秒前
222完成签到,获得积分20
34秒前
36秒前
丘比特应助猪肉水饺采纳,获得10
37秒前
38秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4010813
求助须知:如何正确求助?哪些是违规求助? 3550492
关于积分的说明 11305855
捐赠科研通 3284855
什么是DOI,文献DOI怎么找? 1810889
邀请新用户注册赠送积分活动 886574
科研通“疑难数据库(出版商)”最低求助积分说明 811505