亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Power transformer fault diagnosis based on a self-strengthening offline pre-training model

计算机科学 变压器 人工智能 编码器 残余物 卷积神经网络 人工神经网络 机器学习 模式识别(心理学) 数据挖掘 算法 电压 量子力学 操作系统 物理
作者
Mingwei Zhong,Siqi Yi,Jingmin Fan,Yikang Zhang,Guanglin He,Yunfei Cao,Lutao Feng,Zhichao Tan,Wenjun Mo
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:126: 107142-107142 被引量:10
标识
DOI:10.1016/j.engappai.2023.107142
摘要

Accurate transformer fault diagnosis is crucial for maintaining the power system stability. Due the complex operation condition of the transformer, its faults are with the characteristic of multi-class faults, class-imbalance, and limited diagnosis data of availability. Additionally, some fault samples are only with overheating or discharge labels when collected, it is a challenge that how to how to use these samples. To address these issues, in this paper, a novel transformer fault diagnosis method based on a hybrid model of Res-Variational-Auto-Encoder (ResVAE) and ensemble learning (EL) model is proposed. Through a self-strengthening strategy, fault characteristics are extracted category-by-category by using a residual convolutional neural network, and low dimensional characteristics are mapped into characteristic fusion samples by VAE. Based on this strategy, an offline pre-training model is built based on ResVAE and EL. The hybrid model can obtain more information from offline source domain, enabling the EL to diagnose multiple fault types as well as undetermined faults. Considering 11 categories of imbalanced classification scenarios with limited sample sizes, the comparison is made between eight expansion and six diagnosis algorithms. The results show that the offline pre-training EL model increased the diagnostic accuracy up to 11.224% compared with tradition ratios method. The ResVAE-EL model achieves the highest diagnostic accuracy of 91.011%, which is 10.112% higher than that of the single offline pre-training model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孙孙应助Jim采纳,获得30
8秒前
充电宝应助EliotFang采纳,获得10
34秒前
44秒前
陈杰发布了新的文献求助10
50秒前
kuoping完成签到,获得积分0
1分钟前
彭于晏应助科研通管家采纳,获得10
1分钟前
nickel完成签到,获得积分10
2分钟前
2分钟前
EliotFang发布了新的文献求助10
2分钟前
沉沉完成签到 ,获得积分0
2分钟前
2分钟前
2分钟前
Frank发布了新的文献求助10
2分钟前
oleskarabach发布了新的文献求助10
2分钟前
EliotFang完成签到,获得积分10
3分钟前
fsznc完成签到 ,获得积分0
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
oleskarabach发布了新的文献求助10
3分钟前
CipherSage应助科研通管家采纳,获得10
5分钟前
开心完成签到 ,获得积分10
5分钟前
5分钟前
顾矜应助zsc采纳,获得10
5分钟前
榆果子发布了新的文献求助10
5分钟前
榆果子完成签到,获得积分10
5分钟前
我是笨蛋完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
荆棘鸟发布了新的文献求助10
6分钟前
正传阿飞完成签到,获得积分10
7分钟前
隐形曼青应助荆棘鸟采纳,获得10
7分钟前
荆棘鸟完成签到,获得积分10
7分钟前
7分钟前
Frank完成签到,获得积分10
7分钟前
鲤鱼听荷完成签到 ,获得积分10
8分钟前
8分钟前
tabblk发布了新的文献求助10
8分钟前
赘婿应助科研通管家采纳,获得10
9分钟前
QCB完成签到 ,获得积分10
9分钟前
陈杰发布了新的文献求助10
9分钟前
宋艳芳完成签到,获得积分10
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4582372
求助须知:如何正确求助?哪些是违规求助? 4000106
关于积分的说明 12382171
捐赠科研通 3675045
什么是DOI,文献DOI怎么找? 2025670
邀请新用户注册赠送积分活动 1059319
科研通“疑难数据库(出版商)”最低求助积分说明 945976