Structural temperature gradient evaluation based on bridge monitoring data extended by historical meteorological data

桥(图论) 结构健康监测 计算机科学 期限(时间) 聚类分析 数据挖掘 结构工程 机器学习 工程类 量子力学 医学 物理 内科学
作者
Dong‐Hui Yang,Ze-Xin Guan,Tang Yi,Hong‐Nan Li,Hua Liu
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:23 (3): 1800-1815 被引量:2
标识
DOI:10.1177/14759217231184276
摘要

The structural temperature gradient (STG) is one of the most key factors causing cracking and even damage to bridge structures. However, its real effects on bridge structures are often over- or underestimated in practice. For most operating bridges, the structural health monitoring systems have just been put into use recently, and the monitoring structural temperature data are limited, which always leads to unreasonable STG representative value for a long return period based on such short-term structural temperature data. To solve the problems, this article proposes an STG determination method based on the long-term historical meteorological parameters at bridge sites. First, the main meteorological parameters affecting the STG were determined by correlation analysis. Second, considering the different influence mechanisms of various meteorological conditions on STG, a training sample set construction method is proposed by clustering the meteorological parameters and STG monitoring data. Based on such training data, a correlation model between STG and meteorological parameters can be established to extend the STG dataset based on the historical meteorological data. Finally, the peak over threshold method is applied to analyze the obtained extended STG data and to estimate its representative value. The proposed method was verified through a long-span cable-stayed bridge. The results show that the monitoring dataset of the STG can be effectively extended through the established correlation model. Compared with the short-term monitoring data, more reasonable representative values of the STG can be obtained through the extended dataset of monitoring STG.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Akim应助科研通管家采纳,获得10
刚刚
我是老大应助科研通管家采纳,获得30
刚刚
桐桐应助科研通管家采纳,获得10
刚刚
隐形曼青应助科研通管家采纳,获得10
刚刚
丘比特应助科研通管家采纳,获得10
刚刚
Jasper应助椰子采纳,获得10
刚刚
充电宝应助科研通管家采纳,获得10
刚刚
Chen应助科研通管家采纳,获得20
刚刚
科研通AI2S应助科研通管家采纳,获得10
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
沉默的婴完成签到,获得积分10
1秒前
1秒前
研友_8DVWbn完成签到,获得积分10
1秒前
贰拾Swain发布了新的文献求助10
2秒前
XW完成签到,获得积分10
3秒前
Honeydukes完成签到,获得积分10
3秒前
jgs发布了新的文献求助10
3秒前
叽叽哇哇发布了新的文献求助10
3秒前
爱笑雨竹发布了新的文献求助10
3秒前
yufanhui应助Karry采纳,获得10
3秒前
JOE发布了新的文献求助10
3秒前
动听的山芙关注了科研通微信公众号
4秒前
4秒前
华仔应助隐形的baby采纳,获得20
5秒前
哈喽酷狗发布了新的文献求助10
5秒前
球球您嘞发布了新的文献求助10
6秒前
着魔发布了新的文献求助10
6秒前
zm发布了新的文献求助10
6秒前
8秒前
王天发布了新的文献求助10
8秒前
希望天下0贩的0应助dan1029采纳,获得10
10秒前
ding应助dan1029采纳,获得10
10秒前
10秒前
英姑应助dan1029采纳,获得10
10秒前
可爱的函函应助dan1029采纳,获得10
10秒前
无花果应助dan1029采纳,获得10
10秒前
希望天下0贩的0应助dan1029采纳,获得10
10秒前
Ava应助dan1029采纳,获得10
10秒前
搜集达人应助dan1029采纳,获得10
10秒前
高分求助中
Sustainability in Tides Chemistry 2000
Microlepidoptera Palaearctica, Volumes 1 and 3 - 13 (12-Volume Set) [German] 1122
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 700
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 700
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3101308
求助须知:如何正确求助?哪些是违规求助? 2752714
关于积分的说明 7620589
捐赠科研通 2404990
什么是DOI,文献DOI怎么找? 1276041
科研通“疑难数据库(出版商)”最低求助积分说明 616692
版权声明 599058