清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Structural temperature gradient evaluation based on bridge monitoring data extended by historical meteorological data

桥(图论) 结构健康监测 计算机科学 期限(时间) 聚类分析 数据挖掘 结构工程 机器学习 工程类 量子力学 医学 物理 内科学
作者
Dong‐Hui Yang,Ze-Xin Guan,Ting-Hua Yi,Hong‐Nan Li,Hua Liu
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
卷期号:23 (3): 1800-1815 被引量:12
标识
DOI:10.1177/14759217231184276
摘要

The structural temperature gradient (STG) is one of the most key factors causing cracking and even damage to bridge structures. However, its real effects on bridge structures are often over- or underestimated in practice. For most operating bridges, the structural health monitoring systems have just been put into use recently, and the monitoring structural temperature data are limited, which always leads to unreasonable STG representative value for a long return period based on such short-term structural temperature data. To solve the problems, this article proposes an STG determination method based on the long-term historical meteorological parameters at bridge sites. First, the main meteorological parameters affecting the STG were determined by correlation analysis. Second, considering the different influence mechanisms of various meteorological conditions on STG, a training sample set construction method is proposed by clustering the meteorological parameters and STG monitoring data. Based on such training data, a correlation model between STG and meteorological parameters can be established to extend the STG dataset based on the historical meteorological data. Finally, the peak over threshold method is applied to analyze the obtained extended STG data and to estimate its representative value. The proposed method was verified through a long-span cable-stayed bridge. The results show that the monitoring dataset of the STG can be effectively extended through the established correlation model. Compared with the short-term monitoring data, more reasonable representative values of the STG can be obtained through the extended dataset of monitoring STG.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助oleskarabach采纳,获得10
3秒前
欣欣完成签到 ,获得积分10
19秒前
21秒前
orangr55完成签到,获得积分10
34秒前
34秒前
怕黑斑马发布了新的文献求助10
39秒前
科研啄木鸟完成签到 ,获得积分10
1分钟前
drhwang完成签到,获得积分10
1分钟前
slycmd完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助100
2分钟前
cy0824完成签到 ,获得积分10
3分钟前
wodetaiyangLLL完成签到 ,获得积分10
3分钟前
Ljm发布了新的文献求助20
4分钟前
大模型应助科研通管家采纳,获得10
4分钟前
在水一方应助李哈哈采纳,获得10
4分钟前
Ljm发布了新的文献求助30
4分钟前
5分钟前
李哈哈发布了新的文献求助10
5分钟前
PAIDAXXXX完成签到,获得积分10
5分钟前
Ljm发布了新的文献求助30
5分钟前
大气的画板完成签到 ,获得积分10
5分钟前
QCB完成签到 ,获得积分10
6分钟前
6分钟前
风信子发布了新的文献求助10
6分钟前
灿烂而孤独的八戒完成签到 ,获得积分0
7分钟前
两个榴莲完成签到,获得积分0
7分钟前
好运常在完成签到 ,获得积分10
7分钟前
充电宝应助啊呆哦采纳,获得10
8分钟前
8分钟前
隐形曼青应助活泼学生采纳,获得10
8分钟前
啊呆哦完成签到,获得积分10
8分钟前
啊呆哦发布了新的文献求助10
8分钟前
星辰大海应助十分十分佳采纳,获得10
8分钟前
8分钟前
十分十分佳完成签到,获得积分20
8分钟前
8分钟前
GPTea举报李小雨求助涉嫌违规
8分钟前
9分钟前
活泼学生发布了新的文献求助10
9分钟前
neversay4ever完成签到 ,获得积分10
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4901079
求助须知:如何正确求助?哪些是违规求助? 4180658
关于积分的说明 12977160
捐赠科研通 3945491
什么是DOI,文献DOI怎么找? 2164166
邀请新用户注册赠送积分活动 1182447
关于科研通互助平台的介绍 1088773