极化
材料科学
光电子学
光刻
光学
铁电性
电介质
物理
作者
Zichen Tang,Giovanni Esteves,Roy H. Olsson
摘要
In this study, we demonstrate the ability of polarity inversion of sputtered aluminum scandium nitride thin films through post-fabrication processes with domain widths as small as 220 nm at a periodicity of 440 nm. An approach using photo- and electron-beam lithography to generate sub-quarter micrometer feature size with adjustable duty cycle through a lift-off process is presented. The film with a coercive field Ec+ of 5.35 MV/cm was exercised first with a 1 kHz triangular double bipolar wave and ultimately poled with a 0.5 kHz double monopolar wave using a Radiant Precision Premier II tester. The metal polar (M-polar) and nitrogen polar (N-polar) domains were identified and characterized through potassium hydroxide wet etching as well as piezoresponse force microscopy (PFM). Well-distinguished boundaries between the oppositely polarized domain regions were confirmed through the phase diagram of the PFM results. The relationship between the electrode width, poling voltage, and domain growth was experimentally studied and statistically analyzed, where 7.96 nm/V domain width broadening vs escalating poling voltage was observed. This method produces extremely high domain spatial resolution in III-nitride materials via poling and is transferable to a CMOS-compatible photolithography process. The spatial resolution of the periodically poled Al0.68Sc0.32N is suitable for second-harmonic generation of deep ultraviolet through quasi-phase-matching and RF MEMS operating in the X-Band spectrum.
科研通智能强力驱动
Strongly Powered by AbleSci AI