A long short-term memory modeling-based compensation method for muscle synergy

运动学 补偿(心理学) 摇摆 计算机科学 肌肉团 控制理论(社会学) 流离失所(心理学) 人工神经网络 模拟 物理医学与康复 人工智能 医学 物理 声学 心理学 内分泌学 心理治疗师 控制(管理) 经典力学 精神分析
作者
Zhengye Pan,Lushuai Liu,Xingman Li,Yunchao Ma
出处
期刊:Medical Engineering & Physics [Elsevier]
卷期号:120: 104054-104054
标识
DOI:10.1016/j.medengphy.2023.104054
摘要

Muscle synergy containing temporal and spatial patterns of muscle activity has been frequently used in prediction of kinematic characteristics. However, there is often some discrepancy between the predicted results based on muscle synergy and the actual movement performance. This study aims to propose a new method for compensating muscle synergy that allows the compensated synergy signal to predict kinematic characteristics more accurately. The study used the change of direction in running as background. Non-negative matrix factorisation was used to extract the muscle synergy during the change of direction at different angles. A non-linear association between synergy and the height of pelvic mass centre was established using long and short-term memory neural networks. Based on this model, the height fluctuations of the pelvic centre of mass are used as input and predict the fluctuations of the synergy which were used to compensate for the original synergy in different ways. The accuracy of the synergies compensated in different ways in predicting pelvic centre of mass movement was then assessed by back propagation neural networks. It was found that the compensated synergy significantly improves accuracy in predicting pelvic centre of mass displacement (R2, p < 0.05). The predicted results of all-compensation are significantly different from actual performance in the end-swing (p < 0.05). The predicted results of half-compensation do not differ significantly from the actual performance, and its damage to the original synergy is smaller and does not increase with angle compared to all-compensation. The all-compensation may be affected by individual variability and lead to increased errors. The half-compensation can improve the predictive accuracy of the synergy while reducing the adjustment to the original synergy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助苏西坡采纳,获得10
刚刚
1秒前
1秒前
赘婿应助开心的若血采纳,获得30
1秒前
cgliuhx发布了新的文献求助10
1秒前
甜蜜晓绿完成签到,获得积分10
1秒前
科研通AI5应助润润润采纳,获得10
1秒前
arT完成签到,获得积分10
2秒前
2秒前
852应助huma采纳,获得10
3秒前
3秒前
SInyi发布了新的文献求助10
3秒前
4秒前
4秒前
无为应助小杨杨采纳,获得10
5秒前
memory完成签到 ,获得积分10
5秒前
jzrhhh完成签到,获得积分10
6秒前
米里迷路发布了新的文献求助10
6秒前
吴雪完成签到 ,获得积分10
7秒前
Orange应助jjdgangan采纳,获得10
8秒前
shidewu发布了新的文献求助10
8秒前
内向的白玉完成签到 ,获得积分10
9秒前
10秒前
10秒前
娜娜家的大宝贝完成签到,获得积分10
10秒前
科研小白发布了新的文献求助10
10秒前
厉害的哄哄完成签到,获得积分10
12秒前
无花果应助Jupiter采纳,获得20
12秒前
Wg发布了新的文献求助10
13秒前
Akim应助小伏采纳,获得10
13秒前
Hello应助lyy采纳,获得10
13秒前
开心的若血完成签到,获得积分20
14秒前
怕孤独的思山完成签到,获得积分10
14秒前
不安慕蕊发布了新的文献求助10
14秒前
15秒前
俭朴听南完成签到 ,获得积分10
15秒前
ZHI完成签到 ,获得积分10
15秒前
lu完成签到,获得积分10
17秒前
不穷知识发布了新的文献求助10
17秒前
豆壳儿完成签到,获得积分10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3553842
求助须知:如何正确求助?哪些是违规求助? 3129593
关于积分的说明 9383508
捐赠科研通 2828757
什么是DOI,文献DOI怎么找? 1555168
邀请新用户注册赠送积分活动 725867
科研通“疑难数据库(出版商)”最低求助积分说明 715320