A diagnostic model for sepsis-induced acute lung injury using a consensus machine learning approach and its therapeutic implications

特征选择 机器学习 人工智能 医学 接收机工作特性 列线图 支持向量机 败血症 规范化(社会学) 计算机科学 生物信息学 肿瘤科 生物 免疫学 人类学 社会学
作者
Yongxin Zheng,Jinping Wang,Zhaoyi Ling,Jiamei Zhang,Yuan Zeng,Ke Wang,Yu Zhang,Lingbo Nong,Ling Sang,Yonghao Xu,Xiaoqing Liu,Yimin Li,Yongbo Huang
出处
期刊:Journal of Translational Medicine [BioMed Central]
卷期号:21 (1) 被引量:16
标识
DOI:10.1186/s12967-023-04499-4
摘要

Abstract Background A significant proportion of septic patients with acute lung injury (ALI) are recognized late due to the absence of an efficient diagnostic test, leading to the postponed treatments and consequently higher mortality. Identifying diagnostic biomarkers may improve screening to identify septic patients at high risk of ALI earlier and provide the potential effective therapeutic drugs. Machine learning represents a powerful approach for making sense of complex gene expression data to find robust ALI diagnostic biomarkers. Methods The datasets were obtained from GEO and ArrayExpress databases. Following quality control and normalization, the datasets (GSE66890, GSE10474 and GSE32707) were merged as the training set, and four machine learning feature selection methods (Elastic net, SVM, random forest and XGBoost) were applied to construct the diagnostic model. The other datasets were considered as the validation sets. To further evaluate the performance and predictive value of diagnostic model, nomogram, Decision Curve Analysis (DCA) and Clinical Impact Curve (CIC) were constructed. Finally, the potential small molecular compounds interacting with selected features were explored from the CTD database. Results The results of GSEA showed that immune response and metabolism might play an important role in the pathogenesis of sepsis-induced ALI. Then, 52 genes were identified as putative biomarkers by consensus feature selection from all four methods. Among them, 5 genes (ARHGDIB, ALDH1A1, TACR3, TREM1 and PI3) were selected by all methods and used to predict ALI diagnosis with high accuracy. The external datasets (E-MTAB-5273 and E-MTAB-5274) demonstrated that the diagnostic model had great accuracy with AUC value of 0.725 and 0.833, respectively. In addition, the nomogram, DCA and CIC showed that the diagnostic model had great performance and predictive value. Finally, the small molecular compounds (Curcumin, Tretinoin, Acetaminophen, Estradiol and Dexamethasone) were screened as the potential therapeutic agents for sepsis-induced ALI. Conclusion This consensus of multiple machine learning algorithms identified 5 genes that were able to distinguish ALI from septic patients. The diagnostic model could identify septic patients at high risk of ALI, and provide potential therapeutic targets for sepsis-induced ALI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桃子发布了新的文献求助20
刚刚
卡皮巴拉yuan完成签到,获得积分10
刚刚
刚刚
YZZ完成签到,获得积分10
1秒前
1秒前
风趣采白发布了新的文献求助10
1秒前
顺心的皮卡丘完成签到 ,获得积分10
1秒前
可爱的函函应助1097采纳,获得10
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
侯安琪发布了新的文献求助10
2秒前
chenlin发布了新的文献求助30
3秒前
3秒前
3秒前
WangXiaoze发布了新的文献求助10
3秒前
✨✨✨发布了新的文献求助10
4秒前
4秒前
龍龖龘完成签到,获得积分20
4秒前
无某发布了新的文献求助10
4秒前
科研通AI5应助kqd采纳,获得10
4秒前
4秒前
楚慈楚发布了新的文献求助10
4秒前
威武的成风完成签到,获得积分10
5秒前
5秒前
5秒前
J.完成签到 ,获得积分10
5秒前
Xiaoshen发布了新的文献求助10
6秒前
YYXS完成签到,获得积分10
6秒前
7秒前
龍龖龘发布了新的文献求助10
7秒前
7秒前
7秒前
专一的大神完成签到 ,获得积分10
8秒前
hu发布了新的文献求助30
8秒前
宛海发布了新的文献求助10
8秒前
8秒前
9秒前
烟花应助飞鸿影下采纳,获得10
9秒前
lzy完成签到,获得积分10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5068492
求助须知:如何正确求助?哪些是违规求助? 4290117
关于积分的说明 13366180
捐赠科研通 4109894
什么是DOI,文献DOI怎么找? 2250517
邀请新用户注册赠送积分活动 1255866
关于科研通互助平台的介绍 1188426