亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A diagnostic model for sepsis-induced acute lung injury using a consensus machine learning approach and its therapeutic implications

特征选择 机器学习 人工智能 医学 接收机工作特性 列线图 支持向量机 败血症 规范化(社会学) 计算机科学 生物信息学 肿瘤科 生物 免疫学 人类学 社会学
作者
Yongxin Zheng,Jinping Wang,Zhaoyi Ling,Jiamei Zhang,Yuan Zeng,Ke Wang,Yu Zhang,Lingbo Nong,Ling Sang,Yonghao Xu,Xiaoqing Liu,Yimin Li,Yongbo Huang
出处
期刊:Journal of Translational Medicine [Springer Nature]
卷期号:21 (1) 被引量:16
标识
DOI:10.1186/s12967-023-04499-4
摘要

Abstract Background A significant proportion of septic patients with acute lung injury (ALI) are recognized late due to the absence of an efficient diagnostic test, leading to the postponed treatments and consequently higher mortality. Identifying diagnostic biomarkers may improve screening to identify septic patients at high risk of ALI earlier and provide the potential effective therapeutic drugs. Machine learning represents a powerful approach for making sense of complex gene expression data to find robust ALI diagnostic biomarkers. Methods The datasets were obtained from GEO and ArrayExpress databases. Following quality control and normalization, the datasets (GSE66890, GSE10474 and GSE32707) were merged as the training set, and four machine learning feature selection methods (Elastic net, SVM, random forest and XGBoost) were applied to construct the diagnostic model. The other datasets were considered as the validation sets. To further evaluate the performance and predictive value of diagnostic model, nomogram, Decision Curve Analysis (DCA) and Clinical Impact Curve (CIC) were constructed. Finally, the potential small molecular compounds interacting with selected features were explored from the CTD database. Results The results of GSEA showed that immune response and metabolism might play an important role in the pathogenesis of sepsis-induced ALI. Then, 52 genes were identified as putative biomarkers by consensus feature selection from all four methods. Among them, 5 genes (ARHGDIB, ALDH1A1, TACR3, TREM1 and PI3) were selected by all methods and used to predict ALI diagnosis with high accuracy. The external datasets (E-MTAB-5273 and E-MTAB-5274) demonstrated that the diagnostic model had great accuracy with AUC value of 0.725 and 0.833, respectively. In addition, the nomogram, DCA and CIC showed that the diagnostic model had great performance and predictive value. Finally, the small molecular compounds (Curcumin, Tretinoin, Acetaminophen, Estradiol and Dexamethasone) were screened as the potential therapeutic agents for sepsis-induced ALI. Conclusion This consensus of multiple machine learning algorithms identified 5 genes that were able to distinguish ALI from septic patients. The diagnostic model could identify septic patients at high risk of ALI, and provide potential therapeutic targets for sepsis-induced ALI.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
34秒前
37秒前
白华苍松发布了新的文献求助20
47秒前
58秒前
freyaaaaa应助科研通管家采纳,获得30
1分钟前
1分钟前
Lucas应助科研通管家采纳,获得10
1分钟前
1分钟前
Hello应助WWJ采纳,获得10
1分钟前
gszy1975完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
深情安青应助yumeini采纳,获得10
2分钟前
毛毛完成签到,获得积分10
2分钟前
kuoping完成签到,获得积分0
3分钟前
脑洞疼应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
freyaaaaa应助科研通管家采纳,获得30
3分钟前
3分钟前
无极微光应助白华苍松采纳,获得20
3分钟前
ericxu发布了新的文献求助10
3分钟前
ericxu完成签到,获得积分10
3分钟前
4分钟前
nenoaowu发布了新的文献求助10
4分钟前
Owen应助nenoaowu采纳,获得10
4分钟前
4分钟前
胡可完成签到 ,获得积分10
4分钟前
4分钟前
wzbc完成签到,获得积分10
4分钟前
5分钟前
积极的觅松完成签到 ,获得积分10
5分钟前
滕皓轩完成签到 ,获得积分10
6分钟前
无极微光应助白华苍松采纳,获得20
6分钟前
贤惠的白开水完成签到 ,获得积分10
6分钟前
瘦瘦的不可完成签到,获得积分20
6分钟前
freyaaaaa应助科研通管家采纳,获得30
7分钟前
7分钟前
7分钟前
yumeini发布了新的文献求助10
7分钟前
爆米花应助瘦瘦的不可采纳,获得10
7分钟前
无极微光应助白华苍松采纳,获得20
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Schlieren and Shadowgraph Techniques:Visualizing Phenomena in Transparent Media 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5515951
求助须知:如何正确求助?哪些是违规求助? 4609154
关于积分的说明 14514552
捐赠科研通 4545687
什么是DOI,文献DOI怎么找? 2490830
邀请新用户注册赠送积分活动 1472661
关于科研通互助平台的介绍 1444426