已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A diagnostic model for sepsis-induced acute lung injury using a consensus machine learning approach and its therapeutic implications

特征选择 机器学习 人工智能 医学 接收机工作特性 列线图 支持向量机 败血症 规范化(社会学) 计算机科学 生物信息学 肿瘤科 生物 免疫学 人类学 社会学
作者
Yongxin Zheng,Jinping Wang,Zhaoyi Ling,Jiamei Zhang,Yuan Zeng,Ke Wang,Yu Zhang,Lingbo Nong,Ling Sang,Yonghao Xu,Junhua Li,Yimin Li,Yongbo Huang
出处
期刊:Journal of Translational Medicine [Springer Nature]
卷期号:21 (1) 被引量:9
标识
DOI:10.1186/s12967-023-04499-4
摘要

A significant proportion of septic patients with acute lung injury (ALI) are recognized late due to the absence of an efficient diagnostic test, leading to the postponed treatments and consequently higher mortality. Identifying diagnostic biomarkers may improve screening to identify septic patients at high risk of ALI earlier and provide the potential effective therapeutic drugs. Machine learning represents a powerful approach for making sense of complex gene expression data to find robust ALI diagnostic biomarkers.The datasets were obtained from GEO and ArrayExpress databases. Following quality control and normalization, the datasets (GSE66890, GSE10474 and GSE32707) were merged as the training set, and four machine learning feature selection methods (Elastic net, SVM, random forest and XGBoost) were applied to construct the diagnostic model. The other datasets were considered as the validation sets. To further evaluate the performance and predictive value of diagnostic model, nomogram, Decision Curve Analysis (DCA) and Clinical Impact Curve (CIC) were constructed. Finally, the potential small molecular compounds interacting with selected features were explored from the CTD database.The results of GSEA showed that immune response and metabolism might play an important role in the pathogenesis of sepsis-induced ALI. Then, 52 genes were identified as putative biomarkers by consensus feature selection from all four methods. Among them, 5 genes (ARHGDIB, ALDH1A1, TACR3, TREM1 and PI3) were selected by all methods and used to predict ALI diagnosis with high accuracy. The external datasets (E-MTAB-5273 and E-MTAB-5274) demonstrated that the diagnostic model had great accuracy with AUC value of 0.725 and 0.833, respectively. In addition, the nomogram, DCA and CIC showed that the diagnostic model had great performance and predictive value. Finally, the small molecular compounds (Curcumin, Tretinoin, Acetaminophen, Estradiol and Dexamethasone) were screened as the potential therapeutic agents for sepsis-induced ALI.This consensus of multiple machine learning algorithms identified 5 genes that were able to distinguish ALI from septic patients. The diagnostic model could identify septic patients at high risk of ALI, and provide potential therapeutic targets for sepsis-induced ALI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dede发布了新的文献求助10
3秒前
Nakacoke77完成签到,获得积分10
5秒前
单纯手套111完成签到,获得积分10
8秒前
英姑应助wang采纳,获得10
8秒前
9秒前
12秒前
赵暖橙完成签到,获得积分20
14秒前
cs完成签到 ,获得积分10
16秒前
18秒前
Pikno123应助赵暖橙采纳,获得10
21秒前
21秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
寻道图强应助科研通管家采纳,获得30
23秒前
27秒前
30秒前
NexusExplorer应助心睡采纳,获得30
30秒前
yy发布了新的文献求助10
32秒前
俊逸沅完成签到,获得积分10
33秒前
HRZ完成签到 ,获得积分10
36秒前
37秒前
华仔应助yy采纳,获得30
38秒前
38秒前
38秒前
心睡完成签到,获得积分10
39秒前
40秒前
心睡发布了新的文献求助30
42秒前
xybjt发布了新的文献求助10
42秒前
星酒发布了新的文献求助10
45秒前
yy完成签到,获得积分20
46秒前
IKUN发布了新的文献求助10
47秒前
认真的善斓完成签到 ,获得积分10
47秒前
丢丢发布了新的文献求助10
47秒前
jindui完成签到 ,获得积分10
53秒前
yema完成签到 ,获得积分10
54秒前
56秒前
56秒前
大模型应助IKUN采纳,获得10
56秒前
57秒前
57秒前
58秒前
高分求助中
Earth System Geophysics 1000
Semiconductor Process Reliability in Practice 650
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3207671
求助须知:如何正确求助?哪些是违规求助? 2856984
关于积分的说明 8108052
捐赠科研通 2522527
什么是DOI,文献DOI怎么找? 1355756
科研通“疑难数据库(出版商)”最低求助积分说明 642234
邀请新用户注册赠送积分活动 613602