已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A diagnostic model for sepsis-induced acute lung injury using a consensus machine learning approach and its therapeutic implications

特征选择 机器学习 人工智能 医学 接收机工作特性 列线图 支持向量机 败血症 规范化(社会学) 计算机科学 生物信息学 肿瘤科 生物 免疫学 人类学 社会学
作者
Yongxin Zheng,Jinping Wang,Zhaoyi Ling,Jiamei Zhang,Yuan Zeng,Ke Wang,Yu Zhang,Lingbo Nong,Ling Sang,Yonghao Xu,Xiaoqing Liu,Yimin Li,Yongbo Huang
出处
期刊:Journal of Translational Medicine [Springer Nature]
卷期号:21 (1) 被引量:16
标识
DOI:10.1186/s12967-023-04499-4
摘要

Abstract Background A significant proportion of septic patients with acute lung injury (ALI) are recognized late due to the absence of an efficient diagnostic test, leading to the postponed treatments and consequently higher mortality. Identifying diagnostic biomarkers may improve screening to identify septic patients at high risk of ALI earlier and provide the potential effective therapeutic drugs. Machine learning represents a powerful approach for making sense of complex gene expression data to find robust ALI diagnostic biomarkers. Methods The datasets were obtained from GEO and ArrayExpress databases. Following quality control and normalization, the datasets (GSE66890, GSE10474 and GSE32707) were merged as the training set, and four machine learning feature selection methods (Elastic net, SVM, random forest and XGBoost) were applied to construct the diagnostic model. The other datasets were considered as the validation sets. To further evaluate the performance and predictive value of diagnostic model, nomogram, Decision Curve Analysis (DCA) and Clinical Impact Curve (CIC) were constructed. Finally, the potential small molecular compounds interacting with selected features were explored from the CTD database. Results The results of GSEA showed that immune response and metabolism might play an important role in the pathogenesis of sepsis-induced ALI. Then, 52 genes were identified as putative biomarkers by consensus feature selection from all four methods. Among them, 5 genes (ARHGDIB, ALDH1A1, TACR3, TREM1 and PI3) were selected by all methods and used to predict ALI diagnosis with high accuracy. The external datasets (E-MTAB-5273 and E-MTAB-5274) demonstrated that the diagnostic model had great accuracy with AUC value of 0.725 and 0.833, respectively. In addition, the nomogram, DCA and CIC showed that the diagnostic model had great performance and predictive value. Finally, the small molecular compounds (Curcumin, Tretinoin, Acetaminophen, Estradiol and Dexamethasone) were screened as the potential therapeutic agents for sepsis-induced ALI. Conclusion This consensus of multiple machine learning algorithms identified 5 genes that were able to distinguish ALI from septic patients. The diagnostic model could identify septic patients at high risk of ALI, and provide potential therapeutic targets for sepsis-induced ALI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
66小鼠发布了新的文献求助10
4秒前
4秒前
1234发布了新的文献求助10
5秒前
5秒前
还不回家发布了新的文献求助10
7秒前
诺颜爱完成签到,获得积分10
7秒前
无花果应助老实天菱采纳,获得10
9秒前
12秒前
13秒前
14秒前
wanci应助紧张的怜寒采纳,获得10
17秒前
西瓜发布了新的文献求助10
17秒前
lor完成签到,获得积分10
18秒前
惊鸿完成签到 ,获得积分10
19秒前
Naturewoman完成签到,获得积分10
22秒前
25秒前
88888完成签到,获得积分10
28秒前
朝朝暮夕发布了新的文献求助10
29秒前
ding应助无题采纳,获得10
29秒前
anle完成签到 ,获得积分10
33秒前
null应助时间尘埃采纳,获得10
35秒前
科研通AI6应助88888采纳,获得10
41秒前
Akim应助热心市民小红花采纳,获得30
43秒前
46秒前
酷波er应助西米采纳,获得10
48秒前
50秒前
51秒前
51秒前
51秒前
56秒前
乔木自燃完成签到 ,获得积分10
56秒前
56秒前
58秒前
XT发布了新的文献求助10
1分钟前
阿白发布了新的文献求助10
1分钟前
zzz完成签到 ,获得积分10
1分钟前
大模型应助Sylvia采纳,获得10
1分钟前
知行者完成签到 ,获得积分10
1分钟前
西米发布了新的文献求助10
1分钟前
123123完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5431945
求助须知:如何正确求助?哪些是违规求助? 4544768
关于积分的说明 14193772
捐赠科研通 4463994
什么是DOI,文献DOI怎么找? 2446920
邀请新用户注册赠送积分活动 1438241
关于科研通互助平台的介绍 1415027