A diagnostic model for sepsis-induced acute lung injury using a consensus machine learning approach and its therapeutic implications

特征选择 机器学习 人工智能 医学 接收机工作特性 列线图 支持向量机 败血症 规范化(社会学) 计算机科学 生物信息学 肿瘤科 生物 免疫学 人类学 社会学
作者
Yongxin Zheng,Jinping Wang,Zhaoyi Ling,Jiamei Zhang,Yuan Zeng,Ke Wang,Yu Zhang,Lingbo Nong,Ling Sang,Yonghao Xu,Xiaoqing Liu,Yimin Li,Yongbo Huang
出处
期刊:Journal of Translational Medicine [Springer Nature]
卷期号:21 (1) 被引量:16
标识
DOI:10.1186/s12967-023-04499-4
摘要

Abstract Background A significant proportion of septic patients with acute lung injury (ALI) are recognized late due to the absence of an efficient diagnostic test, leading to the postponed treatments and consequently higher mortality. Identifying diagnostic biomarkers may improve screening to identify septic patients at high risk of ALI earlier and provide the potential effective therapeutic drugs. Machine learning represents a powerful approach for making sense of complex gene expression data to find robust ALI diagnostic biomarkers. Methods The datasets were obtained from GEO and ArrayExpress databases. Following quality control and normalization, the datasets (GSE66890, GSE10474 and GSE32707) were merged as the training set, and four machine learning feature selection methods (Elastic net, SVM, random forest and XGBoost) were applied to construct the diagnostic model. The other datasets were considered as the validation sets. To further evaluate the performance and predictive value of diagnostic model, nomogram, Decision Curve Analysis (DCA) and Clinical Impact Curve (CIC) were constructed. Finally, the potential small molecular compounds interacting with selected features were explored from the CTD database. Results The results of GSEA showed that immune response and metabolism might play an important role in the pathogenesis of sepsis-induced ALI. Then, 52 genes were identified as putative biomarkers by consensus feature selection from all four methods. Among them, 5 genes (ARHGDIB, ALDH1A1, TACR3, TREM1 and PI3) were selected by all methods and used to predict ALI diagnosis with high accuracy. The external datasets (E-MTAB-5273 and E-MTAB-5274) demonstrated that the diagnostic model had great accuracy with AUC value of 0.725 and 0.833, respectively. In addition, the nomogram, DCA and CIC showed that the diagnostic model had great performance and predictive value. Finally, the small molecular compounds (Curcumin, Tretinoin, Acetaminophen, Estradiol and Dexamethasone) were screened as the potential therapeutic agents for sepsis-induced ALI. Conclusion This consensus of multiple machine learning algorithms identified 5 genes that were able to distinguish ALI from septic patients. The diagnostic model could identify septic patients at high risk of ALI, and provide potential therapeutic targets for sepsis-induced ALI.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助youwenjing11采纳,获得10
1秒前
kook发布了新的文献求助10
1秒前
2秒前
科研通AI6应助edtaa采纳,获得10
2秒前
2秒前
2秒前
kong完成签到,获得积分10
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
zyz发布了新的文献求助30
2秒前
2秒前
远方如歌完成签到,获得积分10
3秒前
韩麒嘉发布了新的文献求助10
3秒前
月亮邮递员完成签到,获得积分10
3秒前
123456发布了新的文献求助10
3秒前
紫气东来发布了新的文献求助10
4秒前
紫气东来发布了新的文献求助10
4秒前
紫气东来发布了新的文献求助50
4秒前
李欣悦发布了新的文献求助10
4秒前
5秒前
紫气东来发布了新的文献求助10
5秒前
没有神的过往完成签到,获得积分10
6秒前
ZHANG6545完成签到,获得积分10
7秒前
渔落完成签到,获得积分10
7秒前
7秒前
张鱼小丸子完成签到,获得积分10
7秒前
Wen发布了新的文献求助10
8秒前
害羞向日葵完成签到 ,获得积分10
8秒前
VDC应助惜筠采纳,获得30
8秒前
Always62442发布了新的文献求助10
8秒前
multi发布了新的文献求助10
9秒前
完美世界应助kook采纳,获得10
9秒前
好样的完成签到,获得积分10
9秒前
10秒前
11秒前
xiaofu完成签到,获得积分10
13秒前
km完成签到,获得积分10
13秒前
myt发布了新的文献求助30
13秒前
无极微光应助十米采纳,获得20
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836