放射发光
闪烁体
量子产额
材料科学
光致发光
卤化物
发光
闪烁
光电子学
光学
物理
荧光
化学
探测器
无机化学
作者
Na Lin,R.-S. Wang,Shao‐Ya Zhang,Zihan Lin,Xing‐Yu Chen,Z. Li,Xiao‐Wu Lei,Yuyin Wang,Cheng‐Yang Yue
标识
DOI:10.1002/lpor.202300427
摘要
Abstract Despite the extraordinary X‐ray scintillation performance of three‐dimensional (3D) lead perovskite nanocrystals (PNCs), the serious biotoxicity of Pb 2+ and luminescent instability in water remain insurmountable obstacles for their applications in medical imaging. To address these drawbacks, herein, the study demonstrates one new lead‐free zero‐dimensional (0D) hybrid cuprous halide of single‐crystalline [BzTPP] 2 Cu 2 I 4 (BzTPP = Benzyltriphenylphosphonium) as a satisfactory X‐ray scintillator. [BzTPP] 2 Cu 2 I 4 displays broadband yellowish‐green light emission with a high photoluminescent quantum yield (PLQY) of 44.2% and large Stokes shift of 167 nm upon UV light excitation. High PLQY and negligible self‐absorption enable [BzTPP] 2 Cu 2 I 4 to display impressive scintillation performance excited by X‐ray with a light yield of 27 706 photons MeV ‐1 and low detection limit of 0.352 µ Gy s −1 , surpassing typical 3D PNCs. More importantly, [BzTPP] 2 Cu 2 I 4 represents extraordinary structural and luminescent stability in water for at least one month. The excellent and stable radioluminescence performance as well as solution growth method ensure a [BzTPP] 2 Cu 2 I 4 ‐based screen for fine‐resolution X‐ray imaging with potential in radiography and inspection. This work highlights the multiple merits of low‐toxicity and cost, high light yield, and long‐term water‐stability of 0D hybrid cuprous halides as highly desirable X‐ray scintillators.
科研通智能强力驱动
Strongly Powered by AbleSci AI