Supramolecular Self-Assembly of Diketopyrrolopyrrole with Unprecedented Photoconductivity

超分子化学 材料科学 光电导性 有机半导体 氢键 半导体 化学物理 超分子组装 非共价相互作用 分子内力 电子迁移率 光电子学 结晶学 纳米技术 分子 化学 晶体结构 立体化学 有机化学
作者
Nilabja Maity,Manoj Sharma,Samrat Ghosh,Mathias K. Huss-Hansen,Ahin Roy,Narayanan Ravishankar,Matti Knaapila,Wakana Matsuda,Shu Seki,Satish Patil
出处
期刊:ACS applied electronic materials [American Chemical Society]
卷期号:5 (9): 5093-5102 被引量:1
标识
DOI:10.1021/acsaelm.3c00845
摘要

The oscillation of chemical bonds in molecular semiconductors plays a key role in fragmenting the electric conducting pathways due to the large fraction of free volumes, acting as “trap sites” for charge carriers. Incorporating directional noncovalent chemical bonds between the monomeric unit in organic semiconductors is an excellent approach to reducing thermally induced structural fluctuations, resulting in a decrease in a trap densities. In this work, we utilize noncovalent interactions in diketopyrrolopyrrole (DPP)-based supramolecular assembled systems to enhance or tune the photoconductivity and charge transport properties. Infinitesimal molecular design by substituting different side chains and introducing intramolecular dihedral angles leads to a notable difference in solid-state packing, transient photoconductivity, and thin film morphology. Grazing incidence wide-angle X-ray scattering, and thin film X-ray diffraction measurements reveal that the packing order is enhanced for hexyl substituted DPP derivatives, resulting in high intrinsic charge carrier mobility of ∑μ = 1.7 cm2 V–1 s–1. At the microscopic level, electron microscopy reveals that the unique self-assembly remarkably improves the structural order via directional hydrogen bonding. These findings exemplify that the supramolecular self-assembly strategy via hydrogen bonding networks is an efficacious way to reduce the molecular vibration and structural defects in molecular semiconductors and ameliorate the performance in optoelectronic devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
伞兵龙发布了新的文献求助10
刚刚
RC_Wang应助科研小民工采纳,获得10
刚刚
sanben完成签到,获得积分10
刚刚
刚刚
_蝴蝶小姐完成签到,获得积分10
1秒前
诗轩发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
迟大猫应助乐乱采纳,获得10
3秒前
万能图书馆应助派大星采纳,获得10
4秒前
FashionBoy应助娜行采纳,获得10
5秒前
5秒前
传奇3应助后知后觉采纳,获得10
6秒前
6秒前
6秒前
科研通AI2S应助Chem is try采纳,获得10
6秒前
7秒前
a方舟发布了新的文献求助10
7秒前
寒冷书竹发布了新的文献求助10
7秒前
7秒前
hhh发布了新的文献求助10
7秒前
顾矜应助富婆嘉嘉子采纳,获得10
7秒前
7秒前
7秒前
8秒前
江风海韵完成签到,获得积分10
8秒前
火星上的从雪完成签到,获得积分10
8秒前
在水一方应助kai采纳,获得10
8秒前
打打应助留胡子的青柏采纳,获得10
9秒前
9秒前
zhanghw发布了新的文献求助10
9秒前
Frank完成签到,获得积分10
9秒前
桐桐应助小喵采纳,获得10
9秒前
香蕉觅云应助执笔客采纳,获得10
9秒前
light完成签到 ,获得积分10
9秒前
你仔细听完成签到,获得积分10
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672