Snow Mask Guided Adaptive Residual Network for Image Snow Removal

雪花 除雪 计算机科学 人工智能 像素 计算机视觉 残余物 分割 遥感 地质学 算法 气象学 地理
作者
Bodong Cheng,Juncheng Li,Ying Chen,Tieyong Zeng
出处
期刊:Computer Vision and Image Understanding [Elsevier]
卷期号:236: 103819-103819 被引量:34
标识
DOI:10.1016/j.cviu.2023.103819
摘要

Image restoration under severe weather is a challenging task. Most of the past works focused on removing rain and haze phenomena in images. However, snow is also an extremely common atmospheric phenomenon that will seriously affect the performance of high-level computer vision tasks, such as object detection and semantic segmentation. Recently, some methods have been proposed for snow removing, and most methods deal with snow images directly as the optimization object. However, the distribution of snow location and shape is complex. Therefore, failure to detect snowflakes/snow streak effectively will affect snow removing and limit the model performance. To solve these issues, we propose a Snow Mask Guided Adaptive Residual Network (SMGARN). Specifically, SMGARN consists of three parts, Mask-Net, Guidance-Fusion Network (GF-Net), and Reconstruct-Net. Firstly, we build a Mask-Net with Self-pixel Attention (SA) and Cross-pixel Attention (CA) to capture the features of snowflakes and accurately localized the location of the snow, thus predicting an accurate snow mask. Secondly, the predicted snow mask is sent into the specially designed GF-Net to adaptively guide the model to remove snow. Finally, an efficient Reconstruct-Net is used to remove the veiling effect and correct the image to reconstruct the final snow-free image. Furthermore, we propose a more refined dataset of real snow images, SnowWorld24, to provide faster evaluation of snow-free images. Extensive experiments show that our SMGARN numerically outperforms all existing snow removal methods, and the reconstructed images are clearer in visual contrast. All codes are available at https://github.com/MIVRC/SMGARN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xuesensu完成签到 ,获得积分10
刚刚
豌豆完成签到,获得积分10
1秒前
M先生完成签到,获得积分10
1秒前
2秒前
4秒前
科研通AI5应助sun采纳,获得10
4秒前
shitzu完成签到 ,获得积分10
5秒前
choco发布了新的文献求助10
7秒前
8秒前
李健的小迷弟应助sun采纳,获得10
8秒前
Jzhang应助liyuchen采纳,获得10
8秒前
魏伯安发布了新的文献求助30
8秒前
jjjjjj发布了新的文献求助30
10秒前
11秒前
伯赏诗霜发布了新的文献求助10
11秒前
糟糕的鹏飞完成签到 ,获得积分10
12秒前
12秒前
欢呼凡旋完成签到,获得积分10
13秒前
韩邹光完成签到,获得积分10
15秒前
xg发布了新的文献求助10
15秒前
16秒前
dktrrrr完成签到,获得积分10
16秒前
季生完成签到,获得积分10
19秒前
徐徐完成签到,获得积分10
19秒前
20秒前
20秒前
haku完成签到,获得积分10
22秒前
可爱的函函应助laodie采纳,获得10
24秒前
Singularity应助忆楠采纳,获得10
25秒前
26秒前
请叫我风吹麦浪应助PengHu采纳,获得30
27秒前
jjjjjj完成签到,获得积分10
27秒前
凝子老师发布了新的文献求助10
29秒前
29秒前
橙子fy16_发布了新的文献求助10
31秒前
cookie完成签到,获得积分10
31秒前
柒柒的小熊完成签到,获得积分10
32秒前
32秒前
Hello应助萌之痴痴采纳,获得10
33秒前
hahaer完成签到,获得积分10
35秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849