Snow Mask Guided Adaptive Residual Network for Image Snow Removal

雪花 除雪 计算机科学 人工智能 像素 计算机视觉 残余物 分割 遥感 地质学 算法 气象学 地理
作者
Bodong Cheng,Juncheng Li,Ying Chen,Tieyong Zeng
出处
期刊:Computer Vision and Image Understanding [Elsevier]
卷期号:236: 103819-103819 被引量:58
标识
DOI:10.1016/j.cviu.2023.103819
摘要

Image restoration under severe weather is a challenging task. Most of the past works focused on removing rain and haze phenomena in images. However, snow is also an extremely common atmospheric phenomenon that will seriously affect the performance of high-level computer vision tasks, such as object detection and semantic segmentation. Recently, some methods have been proposed for snow removing, and most methods deal with snow images directly as the optimization object. However, the distribution of snow location and shape is complex. Therefore, failure to detect snowflakes/snow streak effectively will affect snow removing and limit the model performance. To solve these issues, we propose a Snow Mask Guided Adaptive Residual Network (SMGARN). Specifically, SMGARN consists of three parts, Mask-Net, Guidance-Fusion Network (GF-Net), and Reconstruct-Net. Firstly, we build a Mask-Net with Self-pixel Attention (SA) and Cross-pixel Attention (CA) to capture the features of snowflakes and accurately localized the location of the snow, thus predicting an accurate snow mask. Secondly, the predicted snow mask is sent into the specially designed GF-Net to adaptively guide the model to remove snow. Finally, an efficient Reconstruct-Net is used to remove the veiling effect and correct the image to reconstruct the final snow-free image. Furthermore, we propose a more refined dataset of real snow images, SnowWorld24, to provide faster evaluation of snow-free images. Extensive experiments show that our SMGARN numerically outperforms all existing snow removal methods, and the reconstructed images are clearer in visual contrast. All codes are available at https://github.com/MIVRC/SMGARN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tt发布了新的文献求助10
刚刚
怡然幻然完成签到,获得积分10
刚刚
1秒前
1秒前
桐桐应助拿抓抓拿采纳,获得10
1秒前
1秒前
1秒前
冲冲冲完成签到 ,获得积分10
2秒前
风中诺言完成签到,获得积分10
2秒前
任娜发布了新的文献求助10
2秒前
orange完成签到,获得积分10
2秒前
清欲完成签到 ,获得积分10
3秒前
SciGPT应助LinCheng采纳,获得10
3秒前
3秒前
香蕉海白发布了新的文献求助10
3秒前
wanci应助木木采纳,获得10
3秒前
fafa完成签到,获得积分10
4秒前
正直的幻竹完成签到,获得积分10
4秒前
sss完成签到,获得积分10
4秒前
orange完成签到,获得积分10
4秒前
小蘑菇应助LDD采纳,获得10
4秒前
YCH完成签到,获得积分10
4秒前
5秒前
aki完成签到 ,获得积分10
5秒前
abysm完成签到,获得积分20
6秒前
石榴喵发布了新的文献求助10
6秒前
6秒前
6秒前
idrees完成签到,获得积分10
6秒前
冷酷严青发布了新的文献求助10
6秒前
炙热谷雪完成签到,获得积分10
7秒前
7秒前
星辰大海应助Fan采纳,获得10
7秒前
7秒前
科研通AI2S应助yan采纳,获得10
7秒前
liang发布了新的文献求助10
8秒前
8秒前
上官冷不冷完成签到,获得积分10
8秒前
烟花应助嘿嘿采纳,获得10
8秒前
年轻的觅风完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573825
求助须知:如何正确求助?哪些是违规求助? 4660098
关于积分的说明 14727788
捐赠科研通 4599933
什么是DOI,文献DOI怎么找? 2524546
邀请新用户注册赠送积分活动 1494900
关于科研通互助平台的介绍 1464997