Multi-objective optimization of the combustion chamber geometry for a highland diesel engine fueled with diesel/n-butanol/PODEn by ANN-NSGA III

柴油 柴油机 汽车工程 烟灰 废气再循环 燃烧 氮氧化物 遗传算法 工程类 环境科学 计算机科学 数学 内燃机 化学 数学优化 有机化学
作者
Sheng Gao,Yanhui Zhang,Zhiqing Zhang,Dongli Tan,Junming Li,Zibin Yin,Jingyi Hu,Ziheng Zhao
出处
期刊:Energy [Elsevier BV]
卷期号:282: 128793-128793 被引量:15
标识
DOI:10.1016/j.energy.2023.128793
摘要

In China, about one-third of the land area is over 2000 m, and a large number of equipments using diesel engines are operating in these areas. In order to optimizate the performance and emission characteristics of diesel engines, the investigation have been carried out for a highland diesel engine fueled with 80% diesel +10% n-butanol +10% PODE3 at an altitude of 2000 m. Firstly, a source model of the diesel engine was developed in CONVERGE and validated. Secondly, the combustion chamber geometry (CCG) of the diesel engine was expressed using two cubic Bézier curves and the shape of the curves was controlled using five variables (Hdep, C1, C2, LP2a and LP2b) and two fixed values. Then, the soot, NOx and HC emissions were predicted for different CCG shapes using response surface methodology and artificial neural networks (ANN), and a more appropriate prediction method for ANN was determined by comparing the performance of both. Finally, the predictions of the ANN were optimized using Non-dominated sorting genetic algorithm III (NSGA III) to obtain the Pareto fronts and the optimal solutions were selected from the Pareto fronts using VlseKriterijumska Optimizacija I Kombrissino Resenje (VIKOR). Through optimization, the optimal solution reduced soot, NOx and HC emissions by 67.15%, 7.08% and 92.48%, respectively, compared with the original CCG of the CI engine. In addition, the best CCG was analyzed in detail. Overall, ANN-NSGA III is an efficiently optimized method. The optimized CCG can effectively reduce the emission of CI engine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
emmm发布了新的文献求助10
刚刚
酷波er应助科研通管家采纳,获得10
刚刚
共享精神应助科研通管家采纳,获得10
刚刚
ED应助科研通管家采纳,获得10
刚刚
天天快乐应助科研通管家采纳,获得10
刚刚
orixero应助科研通管家采纳,获得10
刚刚
充电宝应助科研通管家采纳,获得10
刚刚
Akim应助科研通管家采纳,获得20
刚刚
卡卡西应助科研通管家采纳,获得20
刚刚
刚刚
刚刚
小亮哈哈发布了新的文献求助10
2秒前
Zirong发布了新的文献求助10
2秒前
分析发布了新的文献求助20
4秒前
5秒前
ytrewq完成签到 ,获得积分10
5秒前
7秒前
文艺不凡完成签到,获得积分10
10秒前
gzj发布了新的文献求助10
11秒前
11秒前
叶y发布了新的文献求助10
11秒前
Angenstern完成签到 ,获得积分10
15秒前
泽灵发布了新的文献求助50
17秒前
xmk完成签到 ,获得积分10
17秒前
隐形曼青应助xixixixi采纳,获得10
18秒前
科研通AI2S应助src采纳,获得10
19秒前
19秒前
夏虫发布了新的文献求助10
20秒前
熊囧囧发布了新的文献求助10
21秒前
小二郎应助移液枪是什么采纳,获得10
25秒前
26秒前
研友_V8QBrL完成签到,获得积分10
27秒前
chunjun完成签到,获得积分10
28秒前
熊囧囧完成签到,获得积分10
29秒前
Ava应助阿烨采纳,获得10
30秒前
tmxx发布了新的文献求助10
30秒前
31秒前
31秒前
动听乐珍发布了新的文献求助30
32秒前
32秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961041
求助须知:如何正确求助?哪些是违规求助? 3507280
关于积分的说明 11135306
捐赠科研通 3239705
什么是DOI,文献DOI怎么找? 1790347
邀请新用户注册赠送积分活动 872359
科研通“疑难数据库(出版商)”最低求助积分说明 803150