Multi-objective optimization of the combustion chamber geometry for a highland diesel engine fueled with diesel/n-butanol/PODEn by ANN-NSGA III

柴油 柴油机 汽车工程 烟灰 废气再循环 燃烧 氮氧化物 遗传算法 工程类 环境科学 计算机科学 数学 内燃机 化学 数学优化 有机化学
作者
Sheng Gao,Yanhui Zhang,Zhiqing Zhang,Dongli Tan,Junming Li,Zibin Yin,Jingyi Hu,Ziheng Zhao
出处
期刊:Energy [Elsevier BV]
卷期号:282: 128793-128793 被引量:15
标识
DOI:10.1016/j.energy.2023.128793
摘要

In China, about one-third of the land area is over 2000 m, and a large number of equipments using diesel engines are operating in these areas. In order to optimizate the performance and emission characteristics of diesel engines, the investigation have been carried out for a highland diesel engine fueled with 80% diesel +10% n-butanol +10% PODE3 at an altitude of 2000 m. Firstly, a source model of the diesel engine was developed in CONVERGE and validated. Secondly, the combustion chamber geometry (CCG) of the diesel engine was expressed using two cubic Bézier curves and the shape of the curves was controlled using five variables (Hdep, C1, C2, LP2a and LP2b) and two fixed values. Then, the soot, NOx and HC emissions were predicted for different CCG shapes using response surface methodology and artificial neural networks (ANN), and a more appropriate prediction method for ANN was determined by comparing the performance of both. Finally, the predictions of the ANN were optimized using Non-dominated sorting genetic algorithm III (NSGA III) to obtain the Pareto fronts and the optimal solutions were selected from the Pareto fronts using VlseKriterijumska Optimizacija I Kombrissino Resenje (VIKOR). Through optimization, the optimal solution reduced soot, NOx and HC emissions by 67.15%, 7.08% and 92.48%, respectively, compared with the original CCG of the CI engine. In addition, the best CCG was analyzed in detail. Overall, ANN-NSGA III is an efficiently optimized method. The optimized CCG can effectively reduce the emission of CI engine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
叶峰形完成签到,获得积分10
2秒前
无奈的小虾米完成签到,获得积分10
2秒前
屁特完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
bkagyin应助人生有味是清欢采纳,获得10
3秒前
3秒前
乎乎发布了新的文献求助10
4秒前
我不是奶黄包完成签到,获得积分10
4秒前
爆米花应助海姆达尔采纳,获得20
6秒前
Gyaz发布了新的文献求助20
6秒前
HeAuBook发布了新的文献求助200
6秒前
6秒前
科研通AI5应助可爱草丛采纳,获得10
7秒前
7秒前
DFMDFMDFM发布了新的文献求助80
8秒前
9秒前
deng完成签到,获得积分10
9秒前
2026毕业啦发布了新的文献求助10
10秒前
ww完成签到,获得积分20
10秒前
LILI发布了新的文献求助10
10秒前
乎乎完成签到,获得积分10
12秒前
情怀应助洁净问儿采纳,获得10
12秒前
12秒前
LX完成签到,获得积分10
13秒前
13秒前
Xuz完成签到 ,获得积分10
13秒前
ding应助reegdsgsfd采纳,获得10
13秒前
deng发布了新的文献求助10
13秒前
科研通AI6应助Oracle采纳,获得10
13秒前
果果完成签到,获得积分10
13秒前
14秒前
14秒前
15秒前
星辰大海应助鳗鱼寇采纳,获得10
15秒前
gugu完成签到,获得积分10
15秒前
15秒前
16秒前
Lucas应助zzzzg采纳,获得30
16秒前
牟英杰发布了新的文献求助10
17秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5132497
求助须知:如何正确求助?哪些是违规求助? 4333918
关于积分的说明 13502513
捐赠科研通 4170952
什么是DOI,文献DOI怎么找? 2286755
邀请新用户注册赠送积分活动 1287645
关于科研通互助平台的介绍 1228540