CT-Guided, Unsupervised Super-Resolution Reconstruction of Single 3D Magnetic Resonance Image

人工智能 计算机科学 模式识别(心理学) 相似性(几何) 峰值信噪比 图像质量 计算机视觉 磁共振成像 迭代重建 图像分辨率 图像(数学) 超分辨率 医学 放射科
作者
Jiale Wang,Alexander F. Heimann,Moritz Tannast,Guoyan Zheng
出处
期刊:Lecture Notes in Computer Science 卷期号:: 497-507 被引量:1
标识
DOI:10.1007/978-3-031-43907-0_48
摘要

Deep learning-based algorithms for single MR image (MRI) super-resolution have shown great potential in enhancing the resolution of low-quality images. However, many of these methods rely on supervised training with paired low-resolution (LR) and high-resolution (HR) MR images, which can be difficult to obtain in clinical settings. This is because acquiring HR MR images in clinical settings requires a significant amount of time. In contrast, HR CT images are acquired in clinical routine. In this paper, we propose a CT-guided, unsupervised MRI super-resolution reconstruction method based on joint cross-modality image translation and super-resolution reconstruction, eliminating the requirement of high-resolution MRI for training. The proposed approach is validated on two datasets respectively acquired from two different clinical sites. Well-established metrics including Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index Metrics (SSIM), and Learned Perceptual Image Patch Similarity (LPIPS) are used to assess the performance of the proposed method. Our method achieved an average PSNR of 32.23, an average SSIM of 0.90 and an average LPIPS of 0.14 when evaluated on data of the first site. An average PSNR of 30.58, an average SSIM of 0.88, and an average LPIPS of 0.10 were achieved by our method when evaluated on data of the second site.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zh123完成签到,获得积分10
刚刚
1秒前
1秒前
Lv完成签到,获得积分10
1秒前
Apricity应助丁晨采纳,获得10
1秒前
慕青应助李晨阳采纳,获得10
2秒前
3秒前
滴答滴发布了新的文献求助10
3秒前
曾国强发布了新的文献求助10
4秒前
Sean发布了新的文献求助10
4秒前
4秒前
杜丽芳发布了新的文献求助10
4秒前
4秒前
赘婿应助科研通管家采纳,获得10
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
4秒前
小小完成签到,获得积分10
4秒前
在水一方应助科研通管家采纳,获得10
4秒前
深情安青应助科研通管家采纳,获得10
5秒前
Akim应助科研通管家采纳,获得10
5秒前
Stella应助科研通管家采纳,获得10
5秒前
5秒前
研友_VZG7GZ应助科研通管家采纳,获得10
5秒前
星辰大海应助科研通管家采纳,获得10
5秒前
xiaobai123456应助科研通管家采纳,获得50
5秒前
Hello应助科研通管家采纳,获得10
5秒前
核桃发布了新的文献求助10
5秒前
今后应助科研通管家采纳,获得10
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
5秒前
yangph发布了新的文献求助10
5秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
华仔应助科研通管家采纳,获得10
6秒前
6秒前
赘婿应助陌路采纳,获得10
6秒前
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
酷波er应助026采纳,获得10
6秒前
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5619177
求助须知:如何正确求助?哪些是违规求助? 4703952
关于积分的说明 14925213
捐赠科研通 4759305
什么是DOI,文献DOI怎么找? 2550439
邀请新用户注册赠送积分活动 1513156
关于科研通互助平台的介绍 1474401