亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning based pavement performance prediction for data-driven decision of asphalt pavement overlay

覆盖 随机森林 支持向量机 沥青 车辙 预测建模 集成学习 计算机科学 机器学习 工程类 人工智能 材料科学 复合材料 程序设计语言
作者
Jingnan Zhao,Hao Wang
出处
期刊:Structure and Infrastructure Engineering [Informa]
卷期号:21 (6): 940-955 被引量:13
标识
DOI:10.1080/15732479.2023.2258498
摘要

AbstractThis study is to develop pavement performance models using support vector regression and ensemble machine learning methods for selection of pavement overlay strategy. Predictive models of pavement distresses were developed based on the Long-Term Pavement Performance (LTPP) data and compared using support vector machine, random forest regression, gradient boosting machine, and stacking ensemble. Gradient boosting machine was found to be a more effective method to establish predictive models of rut depth and International Roughness Index. Stacking ensemble and random forest regression would provide reliable prediction of alligator cracking. The models developed based on the clusters of climate and traffic parameters were found to be more effective. Based on the developed performance models, the effects of asphalt overlays on pavement distresses and service lives were investigated. When the overlay with recycled asphalt concrete (AC) was applied, the propagation of alligator cracking was faster compared to the overlay with virgin asphalt mixture. Milling before overlay tended to slow the increase of IRI but fasten the development of rut depth.Keywords: Asphalt overlayclusteringdistresseslTPPmachine learningpavement performancerecycled asphalt concrete Disclosure statementNo potential conflict of interest was reported by the author(s).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Epiphany发布了新的文献求助10
7秒前
12秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
23秒前
Luna666完成签到,获得积分10
23秒前
35秒前
犬来八荒发布了新的文献求助10
38秒前
qingfeng完成签到,获得积分10
48秒前
FashionBoy应助犬来八荒采纳,获得20
48秒前
lx完成签到,获得积分10
50秒前
bkagyin应助张璟博采纳,获得10
58秒前
踏实白柏完成签到 ,获得积分10
1分钟前
1分钟前
明亮的老四完成签到 ,获得积分10
1分钟前
1分钟前
好人发布了新的文献求助30
1分钟前
好人完成签到,获得积分10
1分钟前
2分钟前
可爱的函函应助Epiphany采纳,获得10
2分钟前
2分钟前
张璟博发布了新的文献求助10
2分钟前
犬来八荒发布了新的文献求助20
2分钟前
可爱的函函应助张璟博采纳,获得10
2分钟前
2分钟前
Epiphany发布了新的文献求助10
2分钟前
2分钟前
TXZ06发布了新的文献求助30
2分钟前
2分钟前
冷酷愚志完成签到,获得积分10
2分钟前
2分钟前
饼子完成签到 ,获得积分10
2分钟前
2分钟前
Epiphany完成签到,获得积分10
3分钟前
3分钟前
TXZ06发布了新的文献求助30
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
kuoping完成签到,获得积分0
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5634933
求助须知:如何正确求助?哪些是违规求助? 4734317
关于积分的说明 14989509
捐赠科研通 4792669
什么是DOI,文献DOI怎么找? 2559771
邀请新用户注册赠送积分活动 1520077
关于科研通互助平台的介绍 1480136