Machine learning based pavement performance prediction for data-driven decision of asphalt pavement overlay

覆盖 随机森林 支持向量机 沥青 车辙 预测建模 集成学习 计算机科学 机器学习 工程类 人工智能 材料科学 复合材料 程序设计语言
作者
Jingnan Zhao,Hao Wang
出处
期刊:Structure and Infrastructure Engineering [Informa]
卷期号:: 1-16 被引量:4
标识
DOI:10.1080/15732479.2023.2258498
摘要

AbstractThis study is to develop pavement performance models using support vector regression and ensemble machine learning methods for selection of pavement overlay strategy. Predictive models of pavement distresses were developed based on the Long-Term Pavement Performance (LTPP) data and compared using support vector machine, random forest regression, gradient boosting machine, and stacking ensemble. Gradient boosting machine was found to be a more effective method to establish predictive models of rut depth and International Roughness Index. Stacking ensemble and random forest regression would provide reliable prediction of alligator cracking. The models developed based on the clusters of climate and traffic parameters were found to be more effective. Based on the developed performance models, the effects of asphalt overlays on pavement distresses and service lives were investigated. When the overlay with recycled asphalt concrete (AC) was applied, the propagation of alligator cracking was faster compared to the overlay with virgin asphalt mixture. Milling before overlay tended to slow the increase of IRI but fasten the development of rut depth.Keywords: Asphalt overlayclusteringdistresseslTPPmachine learningpavement performancerecycled asphalt concrete Disclosure statementNo potential conflict of interest was reported by the author(s).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yyyfff发布了新的文献求助10
刚刚
小秋发布了新的文献求助10
刚刚
zhang@完成签到,获得积分10
刚刚
左左应助xiaolu采纳,获得10
1秒前
小星翻滚应助xiaolu采纳,获得10
1秒前
djsj应助xiaolu采纳,获得10
1秒前
左左应助xiaolu采纳,获得10
1秒前
Hello应助鲁西西采纳,获得10
1秒前
猪猪hero应助xiaolu采纳,获得10
1秒前
天天快乐应助xiaolu采纳,获得10
1秒前
djsj应助xiaolu采纳,获得10
1秒前
情怀应助xiaolu采纳,获得10
2秒前
科目三应助xiaolu采纳,获得10
2秒前
Akim应助xiaolu采纳,获得10
2秒前
吃猫的鱼完成签到,获得积分20
2秒前
安安发布了新的文献求助10
2秒前
LJL完成签到,获得积分10
3秒前
3秒前
情怀应助詹姆斯采纳,获得10
4秒前
时见麓完成签到 ,获得积分10
5秒前
星辰发布了新的文献求助10
5秒前
5秒前
狼来了aas发布了新的文献求助30
5秒前
汉堡包应助xiaolu采纳,获得10
6秒前
NexusExplorer应助xiaolu采纳,获得10
6秒前
上官若男应助xiaolu采纳,获得10
6秒前
song应助xiaolu采纳,获得10
6秒前
爆米花应助xiaolu采纳,获得10
6秒前
我是老大应助xiaolu采纳,获得10
6秒前
SciGPT应助xiaolu采纳,获得10
6秒前
ET应助xiaolu采纳,获得10
6秒前
星辰大海应助xiaolu采纳,获得10
6秒前
大模型应助xiaolu采纳,获得10
6秒前
MM完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
liudi123456完成签到,获得积分10
9秒前
科研通AI5应助myb采纳,获得10
9秒前
10秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3476968
求助须知:如何正确求助?哪些是违规求助? 3068497
关于积分的说明 9108099
捐赠科研通 2759928
什么是DOI,文献DOI怎么找? 1514467
邀请新用户注册赠送积分活动 700244
科研通“疑难数据库(出版商)”最低求助积分说明 699412