Machine learning based pavement performance prediction for data-driven decision of asphalt pavement overlay

覆盖 随机森林 支持向量机 沥青 车辙 预测建模 集成学习 计算机科学 机器学习 工程类 人工智能 材料科学 复合材料 程序设计语言
作者
Jingnan Zhao,Hao Wang
出处
期刊:Structure and Infrastructure Engineering [Taylor & Francis]
卷期号:: 1-16 被引量:7
标识
DOI:10.1080/15732479.2023.2258498
摘要

AbstractThis study is to develop pavement performance models using support vector regression and ensemble machine learning methods for selection of pavement overlay strategy. Predictive models of pavement distresses were developed based on the Long-Term Pavement Performance (LTPP) data and compared using support vector machine, random forest regression, gradient boosting machine, and stacking ensemble. Gradient boosting machine was found to be a more effective method to establish predictive models of rut depth and International Roughness Index. Stacking ensemble and random forest regression would provide reliable prediction of alligator cracking. The models developed based on the clusters of climate and traffic parameters were found to be more effective. Based on the developed performance models, the effects of asphalt overlays on pavement distresses and service lives were investigated. When the overlay with recycled asphalt concrete (AC) was applied, the propagation of alligator cracking was faster compared to the overlay with virgin asphalt mixture. Milling before overlay tended to slow the increase of IRI but fasten the development of rut depth.Keywords: Asphalt overlayclusteringdistresseslTPPmachine learningpavement performancerecycled asphalt concrete Disclosure statementNo potential conflict of interest was reported by the author(s).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
RUINNNO完成签到,获得积分10
刚刚
fffffffq发布了新的文献求助10
刚刚
大美女完成签到,获得积分10
1秒前
1秒前
墨羽完成签到,获得积分20
1秒前
2秒前
英俊的铭应助玖Nine采纳,获得10
2秒前
2秒前
2秒前
欢喜的小海豚完成签到,获得积分10
3秒前
一一一完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
4秒前
背后大白发布了新的文献求助10
5秒前
今后应助东北雨姐采纳,获得30
5秒前
山南有木兮完成签到,获得积分10
5秒前
5秒前
wyn完成签到,获得积分10
5秒前
mx应助xiaohaitao采纳,获得10
6秒前
墨羽发布了新的文献求助10
6秒前
烂漫梦容发布了新的文献求助10
7秒前
lin发布了新的文献求助10
7秒前
7秒前
今后应助无心的满天采纳,获得10
7秒前
涵泽发布了新的文献求助10
8秒前
我是老大应助lijianguo采纳,获得10
9秒前
sky完成签到,获得积分10
10秒前
芒果发布了新的文献求助10
10秒前
狼堡红太狼完成签到,获得积分10
10秒前
专一的白萱完成签到 ,获得积分10
11秒前
CMJ完成签到,获得积分10
12秒前
12秒前
13秒前
善学以致用应助ming采纳,获得10
13秒前
13秒前
梦鱼完成签到,获得积分10
14秒前
14秒前
14秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961589
求助须知:如何正确求助?哪些是违规求助? 3507917
关于积分的说明 11138698
捐赠科研通 3240341
什么是DOI,文献DOI怎么找? 1790929
邀请新用户注册赠送积分活动 872649
科研通“疑难数据库(出版商)”最低求助积分说明 803306