覆盖
随机森林
支持向量机
沥青
车辙
预测建模
集成学习
计算机科学
机器学习
工程类
人工智能
材料科学
复合材料
程序设计语言
标识
DOI:10.1080/15732479.2023.2258498
摘要
AbstractThis study is to develop pavement performance models using support vector regression and ensemble machine learning methods for selection of pavement overlay strategy. Predictive models of pavement distresses were developed based on the Long-Term Pavement Performance (LTPP) data and compared using support vector machine, random forest regression, gradient boosting machine, and stacking ensemble. Gradient boosting machine was found to be a more effective method to establish predictive models of rut depth and International Roughness Index. Stacking ensemble and random forest regression would provide reliable prediction of alligator cracking. The models developed based on the clusters of climate and traffic parameters were found to be more effective. Based on the developed performance models, the effects of asphalt overlays on pavement distresses and service lives were investigated. When the overlay with recycled asphalt concrete (AC) was applied, the propagation of alligator cracking was faster compared to the overlay with virgin asphalt mixture. Milling before overlay tended to slow the increase of IRI but fasten the development of rut depth.Keywords: Asphalt overlayclusteringdistresseslTPPmachine learningpavement performancerecycled asphalt concrete Disclosure statementNo potential conflict of interest was reported by the author(s).
科研通智能强力驱动
Strongly Powered by AbleSci AI