湿度
材料科学
相对湿度
电解质
无线传感器网络
光电子学
电极
纳米技术
计算机科学
气象学
化学
计算机网络
物理
物理化学
作者
Mingxiang Zhang,Zaihua Duan,Boyu Zhang,Zhen Yuan,Qiuni Zhao,Yadong Jiang,Huiling Tai
出处
期刊:Nano Energy
[Elsevier]
日期:2023-07-31
卷期号:115: 108745-108745
被引量:73
标识
DOI:10.1016/j.nanoen.2023.108745
摘要
Humidity sensor has important applications in environmental and physiological monitoring. With the emergence of self-powered sensor systems, developing self-powered wireless humidity sensor system is highly attractive, but how to realize the humidity sensor with high humidity sensing and power generation performances to achieve self-powered humidity detection system is full of challenges. Herein, we proposed a self-powered electrochemical humidity (ECH) sensor with primary battery structure, using NaCl and hydroxylated multi-walled carbon nanotubes (OH-MWCNTs) as humidity sensing electrolyte, and MnO2 and Al as electrodes. The hygroscopic and ionic conductivity characteristics of the NaCl/OH-MWCNTs electrolyte endow the ECH sensor with spontaneous voltage generation in a wide humidity range of 10.9–91.5 % relative humidity (RH) at room temperature of 25 °C. Notably, a single ECH sensor can output 1.32 V with a maximal power of 20.52 μW at 91.5 % RH. Furthermore, the ECH sensor can be used for respiratory rate monitoring, non-contact switch and visual humidity indication. As a proof of concept, we successfully designed a prototype of self-powered wireless humidity monitoring system based on ECH sensor. This work not only provides a new strategy for developing high-performance ECH sensor, but also provides a reference for the self-powered wireless humidity monitoring system of the ECH sensor.
科研通智能强力驱动
Strongly Powered by AbleSci AI