Wind power forecasting based on variational mode decomposition and high-order fuzzy cognitive maps

风电预测 计算机科学 风力发电 超参数 电力系统 模糊逻辑 系列(地层学) 模糊认知图 功率(物理) 超参数优化 时间序列 数学优化 人工智能 数据挖掘 机器学习 支持向量机 模糊集 数学 模糊数 工程类 物理 量子力学 电气工程 生物 古生物学
作者
Baihao Qiao,Jing Liu,Peng Wu,Yingzhi Teng
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:129: 109586-109586 被引量:49
标识
DOI:10.1016/j.asoc.2022.109586
摘要

Accurate wind power forecasting can effectively reduce the adverse effects of wind power forecasting errors on wind power grid integration and power dispatch. However, current wind power forecasting technology, such as the method based on machine learning, belongs to the black box model and is not solvable. Variational mode decomposition (VMD) is a decomposition technique based on the time–frequency characteristics of the original time series, which has a mathematical theoretical foundation. Besides, fuzzy cognitive map (FCMs) is a kind of soft computing method with strong knowledge representation and reasoning ability. Therefore, to enhance the forecasting accuracy of wind power, in this paper, a novel time series forecasting method based on improved VMD (IVMD) and high-order FCM (HFCM), namely IVMDHFCM is proposed. IVMD can effectively extract the features in the raw time series depending on the time–frequency characteristics of the time series. Then, the subseries obtained by IVMD are modeled and forecasted by HFCM, and the Bayesian ridge regression method is adopted to learn the weight of HFCM. Finally, the differential evolution (DE) algorithm is used to get the optimal hyperparameters of IVMDHFCM. The performance of IVMDHFCM is verified by comparing it with that of state-of-the-art methods on ten publicly available datasets. Moreover, the proposed IVMDHFCM is compared with the existing HFCM based method on ten actual wind power datasets. The results show that the IVMDHFCM can effectively improve the accuracy of wind power forecasting and reduce the forecasting error. Besides, the IVMDHFCM can also effectively explore the fluctuations of wind power.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SZY发布了新的文献求助10
刚刚
刚刚
GGGT关注了科研通微信公众号
1秒前
无非发布了新的文献求助10
1秒前
研友_VZG7GZ应助殷勤的秋荷采纳,获得10
1秒前
林小鱼发布了新的文献求助10
2秒前
豪士赋完成签到,获得积分10
2秒前
3秒前
躞蹀发布了新的文献求助10
3秒前
失眠的耳机完成签到,获得积分10
4秒前
科研通AI2S应助zzb采纳,获得10
4秒前
5秒前
Zx_1993应助忽而今夏采纳,获得30
5秒前
善良的灵羊完成签到 ,获得积分10
5秒前
木子木子粒完成签到 ,获得积分10
7秒前
高挑的萝发布了新的文献求助10
8秒前
crazyfish完成签到,获得积分10
9秒前
9秒前
10秒前
情怀应助拾起地上六便士采纳,获得10
11秒前
高宇晖发布了新的文献求助10
11秒前
未道完成签到,获得积分10
11秒前
12秒前
科研通AI6应助djbj2022采纳,获得10
12秒前
科研通AI6应助kids采纳,获得10
12秒前
古月发布了新的文献求助10
13秒前
14秒前
zzb完成签到,获得积分10
14秒前
芽芽完成签到 ,获得积分10
16秒前
zzb发布了新的文献求助10
16秒前
17秒前
小情绪发布了新的文献求助10
18秒前
科研通AI6应助9527King采纳,获得10
18秒前
19秒前
无非完成签到,获得积分10
20秒前
20秒前
20秒前
21秒前
22秒前
JamesPei应助科研通管家采纳,获得10
22秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5342918
求助须知:如何正确求助?哪些是违规求助? 4478608
关于积分的说明 13940254
捐赠科研通 4375531
什么是DOI,文献DOI怎么找? 2404114
邀请新用户注册赠送积分活动 1396625
关于科研通互助平台的介绍 1368965