Wind power forecasting based on variational mode decomposition and high-order fuzzy cognitive maps

风电预测 计算机科学 风力发电 超参数 电力系统 模糊逻辑 系列(地层学) 模糊认知图 功率(物理) 超参数优化 时间序列 数学优化 人工智能 数据挖掘 机器学习 支持向量机 模糊集 数学 模糊数 工程类 物理 古生物学 电气工程 生物 量子力学
作者
Baihao Qiao,Jing Liu,Peng Wu,Yingzhi Teng
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:129: 109586-109586 被引量:32
标识
DOI:10.1016/j.asoc.2022.109586
摘要

Accurate wind power forecasting can effectively reduce the adverse effects of wind power forecasting errors on wind power grid integration and power dispatch. However, current wind power forecasting technology, such as the method based on machine learning, belongs to the black box model and is not solvable. Variational mode decomposition (VMD) is a decomposition technique based on the time–frequency characteristics of the original time series, which has a mathematical theoretical foundation. Besides, fuzzy cognitive map (FCMs) is a kind of soft computing method with strong knowledge representation and reasoning ability. Therefore, to enhance the forecasting accuracy of wind power, in this paper, a novel time series forecasting method based on improved VMD (IVMD) and high-order FCM (HFCM), namely IVMDHFCM is proposed. IVMD can effectively extract the features in the raw time series depending on the time–frequency characteristics of the time series. Then, the subseries obtained by IVMD are modeled and forecasted by HFCM, and the Bayesian ridge regression method is adopted to learn the weight of HFCM. Finally, the differential evolution (DE) algorithm is used to get the optimal hyperparameters of IVMDHFCM. The performance of IVMDHFCM is verified by comparing it with that of state-of-the-art methods on ten publicly available datasets. Moreover, the proposed IVMDHFCM is compared with the existing HFCM based method on ten actual wind power datasets. The results show that the IVMDHFCM can effectively improve the accuracy of wind power forecasting and reduce the forecasting error. Besides, the IVMDHFCM can also effectively explore the fluctuations of wind power.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
panda完成签到,获得积分10
1秒前
1秒前
fifteen发布了新的文献求助10
1秒前
科研通AI2S应助77采纳,获得10
3秒前
3秒前
苦涩发布了新的文献求助10
4秒前
慕青应助LEESO采纳,获得10
4秒前
5秒前
完美世界应助自然立辉采纳,获得10
5秒前
搞怪的山水完成签到,获得积分10
8秒前
8秒前
顾矜应助踏实的便当采纳,获得10
8秒前
昵昵发布了新的文献求助10
8秒前
宇哈哈发布了新的文献求助20
10秒前
大大小小发布了新的文献求助10
10秒前
彭于彦祖应助yzz采纳,获得20
10秒前
啦啦完成签到,获得积分10
10秒前
苦涩完成签到,获得积分10
12秒前
若水发布了新的文献求助50
13秒前
14秒前
隐形的皮卡丘完成签到 ,获得积分10
16秒前
彭于晏应助孤独代亦采纳,获得10
17秒前
20秒前
21秒前
Linda发布了新的文献求助200
21秒前
22秒前
Tina完成签到,获得积分10
22秒前
22秒前
23秒前
星辰大海应助六个核桃采纳,获得10
23秒前
彭于晏应助积极书双采纳,获得10
24秒前
24秒前
yanxuhuan完成签到,获得积分10
25秒前
冷静战斗机完成签到 ,获得积分10
25秒前
fifteen发布了新的文献求助10
25秒前
传奇3应助Tina采纳,获得10
26秒前
26秒前
科目三应助lili采纳,获得10
26秒前
26秒前
noriZHC发布了新的文献求助10
27秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160823
求助须知:如何正确求助?哪些是违规求助? 2812005
关于积分的说明 7894119
捐赠科研通 2470886
什么是DOI,文献DOI怎么找? 1315786
科研通“疑难数据库(出版商)”最低求助积分说明 631003
版权声明 602053