Wind power forecasting based on variational mode decomposition and high-order fuzzy cognitive maps

风电预测 计算机科学 风力发电 超参数 电力系统 模糊逻辑 系列(地层学) 模糊认知图 功率(物理) 超参数优化 时间序列 数学优化 人工智能 数据挖掘 机器学习 支持向量机 模糊集 数学 模糊数 工程类 物理 量子力学 电气工程 生物 古生物学
作者
Baihao Qiao,Jing Liu,Peng Wu,Yingzhi Teng
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:129: 109586-109586 被引量:40
标识
DOI:10.1016/j.asoc.2022.109586
摘要

Accurate wind power forecasting can effectively reduce the adverse effects of wind power forecasting errors on wind power grid integration and power dispatch. However, current wind power forecasting technology, such as the method based on machine learning, belongs to the black box model and is not solvable. Variational mode decomposition (VMD) is a decomposition technique based on the time–frequency characteristics of the original time series, which has a mathematical theoretical foundation. Besides, fuzzy cognitive map (FCMs) is a kind of soft computing method with strong knowledge representation and reasoning ability. Therefore, to enhance the forecasting accuracy of wind power, in this paper, a novel time series forecasting method based on improved VMD (IVMD) and high-order FCM (HFCM), namely IVMDHFCM is proposed. IVMD can effectively extract the features in the raw time series depending on the time–frequency characteristics of the time series. Then, the subseries obtained by IVMD are modeled and forecasted by HFCM, and the Bayesian ridge regression method is adopted to learn the weight of HFCM. Finally, the differential evolution (DE) algorithm is used to get the optimal hyperparameters of IVMDHFCM. The performance of IVMDHFCM is verified by comparing it with that of state-of-the-art methods on ten publicly available datasets. Moreover, the proposed IVMDHFCM is compared with the existing HFCM based method on ten actual wind power datasets. The results show that the IVMDHFCM can effectively improve the accuracy of wind power forecasting and reduce the forecasting error. Besides, the IVMDHFCM can also effectively explore the fluctuations of wind power.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
3秒前
Antheali应助科研通管家采纳,获得10
3秒前
唐泽雪穗应助科研通管家采纳,获得10
3秒前
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
今后应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
5秒前
sunny850发布了新的文献求助10
5秒前
6秒前
6秒前
坚定芷烟完成签到,获得积分10
7秒前
飞飞猪完成签到,获得积分20
8秒前
kkz完成签到,获得积分10
8秒前
8秒前
拉圈最菜妮厨完成签到,获得积分10
9秒前
9秒前
杨丹完成签到 ,获得积分20
10秒前
10秒前
11秒前
11秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
somebodyzou发布了新的文献求助30
13秒前
kkz发布了新的文献求助10
13秒前
吴世勋fans发布了新的文献求助30
14秒前
蛋蛋完成签到 ,获得积分10
15秒前
陈秋红发布了新的文献求助10
15秒前
16秒前
打打应助hyt采纳,获得10
16秒前
xiekunwhy发布了新的文献求助10
17秒前
包容雪巧发布了新的文献求助10
18秒前
Ava应助羔子采纳,获得10
18秒前
钦川发布了新的文献求助10
19秒前
19秒前
传奇3应助大梨采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4991289
求助须知:如何正确求助?哪些是违规求助? 4239820
关于积分的说明 13208366
捐赠科研通 4034700
什么是DOI,文献DOI怎么找? 2207462
邀请新用户注册赠送积分活动 1218448
关于科研通互助平台的介绍 1136900