亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Identification of DNA-binding proteins via Multi-view LSSVM with independence criterion

独立性(概率论) 计算机科学 鉴定(生物学) 支持向量机 数据挖掘 特征(语言学) 集合(抽象数据类型) 机器学习 人工智能 算法 数学 生物 统计 植物 语言学 哲学 程序设计语言
作者
Shulin Zhao,Yu Zhang,Yongsheng Ding,Quan Zou,Ting Lin,Qing Liu,Ying Zhang
出处
期刊:Methods [Elsevier]
卷期号:207: 29-37 被引量:2
标识
DOI:10.1016/j.ymeth.2022.08.015
摘要

DNA-binding proteins actively participate in life activities such as DNA replication, recombination, gene expression and regulation and play a prominent role in these processes. As DNA-binding proteins continue to be discovered and increase, it is imperative to design an efficient and accurate identification tool. Considering the time-consuming and expensive traditional experimental technology and the insufficient number of samples in the biological computing method based on structural information, we proposed a machine learning algorithm based on sequence information to identify DNA binding proteins, named multi-view Least Squares Support Vector Machine via Hilbert-Schmidt Independence Criterion (multi-view LSSVM via HSIC). This method took 6 feature sets as multi-view input and trains a single view through the LSSVM algorithm. Then, we integrated HSIC into LSSVM as a regular term to reduce the dependence between views and explored the complementary information of multiple views. Subsequently, we trained and coordinated the submodels and finally combined the submodels in the form of weights to obtain the final prediction model. On training set PDB1075, the prediction results of our model were better than those of most existing methods. Independent tests are conducted on the datasets PDB186 and PDB2272. The accuracy of the prediction results was 85.5% and 79.36%, respectively. This result exceeded the current state-of-the-art methods, which showed that the multi-view LSSVM via HSIC can be used as an efficient predictor.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助拼搏妙竹采纳,获得10
刚刚
Airy完成签到,获得积分10
1秒前
4秒前
Bake发布了新的文献求助10
9秒前
10秒前
约三十完成签到,获得积分10
27秒前
可靠馒头发布了新的文献求助10
27秒前
斯文败类应助cheerfulsmurfs采纳,获得10
38秒前
42秒前
onmyway完成签到,获得积分10
42秒前
48秒前
lchenbio完成签到,获得积分10
50秒前
52秒前
orixero应助原来我是狼人采纳,获得10
57秒前
58秒前
彭于晏应助兰贵人采纳,获得10
1分钟前
steven完成签到 ,获得积分10
1分钟前
1分钟前
瓜60126完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
CodeCraft应助爱听歌笑寒采纳,获得10
1分钟前
1分钟前
1分钟前
爱听歌的妙梦完成签到,获得积分10
1分钟前
1分钟前
Zoe完成签到 ,获得积分10
1分钟前
Owen应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
天天快乐应助Zengxin采纳,获得10
1分钟前
2分钟前
2分钟前
酷炫的驳发布了新的文献求助10
2分钟前
2分钟前
2分钟前
YOKO完成签到,获得积分10
2分钟前
2分钟前
2分钟前
高分求助中
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
Plate Tectonics 500
Igneous rocks and processes: a practical guide(第二版) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3417533
求助须知:如何正确求助?哪些是违规求助? 3019181
关于积分的说明 8886754
捐赠科研通 2706621
什么是DOI,文献DOI怎么找? 1484400
科研通“疑难数据库(出版商)”最低求助积分说明 685981
邀请新用户注册赠送积分活动 681147