Engineering Single-Atom Active Sites on Covalent Organic Frameworks for Boosting CO2 Photoreduction

化学 Boosting(机器学习) 共价键 Atom(片上系统) 光化学 纳米技术 有机化学 机器学习 计算机科学 嵌入式系统 材料科学
作者
Lei Ran,Zhuwei Li,Bei Ran,Jiaqi Cao,Yue Zhao,Teng Shao,Yurou Song,Michael K.H. Leung,Licheng Sun,Jungang Hou
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:144 (37): 17097-17109 被引量:438
标识
DOI:10.1021/jacs.2c06920
摘要

Solar carbon dioxide (CO2) conversion is an emerging solution to meet the challenges of sustainable energy systems and environmental/climate concerns. However, the construction of isolated active sites not only influences catalytic activity but also limits the understanding of the structure-catalyst relationship of CO2 reduction. Herein, we develop a universal synthetic protocol to fabricate different single-atom metal sites (e.g., Fe, Co, Ni, Zn, Cu, Mn, and Ru) anchored on the triazine-based covalent organic framework (SAS/Tr-COF) backbone with the bridging structure of metal-nitrogen-chlorine for high-performance catalytic CO2 reduction. Remarkably, the as-synthesized Fe SAS/Tr-COF as a representative catalyst achieved an impressive CO generation rate as high as 980.3 μmol g-1 h-1 and a selectivity of 96.4%, over approximately 26 times higher than that of the pristine Tr-COF under visible light irradiation. From X-ray absorption fine structure analysis and density functional theory calculations, the superior photocatalytic performance is attributed to the synergic effect of atomically dispersed metal sites and Tr-COF host, decreasing the reaction energy barriers for the formation of *COOH intermediates and promoting CO2 adsorption and activation as well as CO desorption. This work not only affords rational design of state-of-the-art catalysts at the molecular level but also provides in-depth insights for efficient CO2 conversion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
2秒前
3秒前
加油呀发布了新的文献求助30
4秒前
4秒前
科研通AI6应助王然采纳,获得10
5秒前
sdniuidifod完成签到,获得积分10
6秒前
cui发布了新的文献求助10
6秒前
风格化橙发布了新的文献求助10
6秒前
7秒前
www111完成签到,获得积分20
7秒前
myelin完成签到,获得积分10
7秒前
chengyida完成签到,获得积分10
8秒前
标致凝莲完成签到 ,获得积分10
9秒前
腼腆的南晴完成签到 ,获得积分10
9秒前
www111发布了新的文献求助10
9秒前
9秒前
田様应助LXJY采纳,获得10
10秒前
端庄的火龙果完成签到 ,获得积分10
10秒前
cui完成签到,获得积分10
11秒前
明研完成签到,获得积分10
11秒前
贪玩的秋柔应助简单不言采纳,获得10
12秒前
彭于晏应助awaibi采纳,获得10
12秒前
王小美发布了新的文献求助10
13秒前
14秒前
14秒前
15秒前
Elena完成签到 ,获得积分10
15秒前
15秒前
16秒前
隐形曼青应助kitiker采纳,获得10
16秒前
16秒前
思源应助霸气映之采纳,获得10
16秒前
16秒前
看不完的文献完成签到,获得积分10
17秒前
17秒前
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5641780
求助须知:如何正确求助?哪些是违规求助? 4757199
关于积分的说明 15014597
捐赠科研通 4800184
什么是DOI,文献DOI怎么找? 2565890
邀请新用户注册赠送积分活动 1524058
关于科研通互助平台的介绍 1483707