Preoperative Diagnosis of Dual‐Phenotype Hepatocellular Carcinoma Using Enhanced MRI Radiomics Models

医学 接收机工作特性 肝细胞癌 逻辑回归 无线电技术 置信区间 Lasso(编程语言) 曼惠特尼U检验 特征选择 放射科 队列 核医学 人工智能 内科学 计算机科学 万维网
作者
Qian Wu,Yanxia Yu,Tao� Zhang,Wen‐jing Zhu,Yanfen Fan,Xi‐ming Wang,Chunhong Hu
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:57 (4): 1185-1196 被引量:11
标识
DOI:10.1002/jmri.28391
摘要

Dual-phenotype hepatocellular carcinoma (DPHCC) is highly aggressive and difficult to distinguish from hepatocellular carcinoma (HCC).To develop and validate clinical and radiomics models based on contrast-enhanced MRI for the preoperative diagnosis of DPHCC.Retrospective.A total of 87 patients with DPHCC and 92 patients with non-DPHCC randomly divided into a training cohort (n = 125: 64 non-DPHCC; 61 DPHCC) and a validation cohort (n = 54: 28 non-DPHCC; 26 DPHCC).A 3.0 T; dynamic contrast-enhanced MRI with time-resolved T1-weighted imaging sequence.In the clinical model, the maximum tumor diameter and hepatitis B virus (HBV) were independent risk factors of DPHCC. In the radiomics model, a total of 1781 radiomics features were extracted from tumor volumes of interest (VOIs) in the arterial phase (AP) and portal venous phase (PP) images. For feature reduction and selection, Pearson correlation coefficient (PCC) and recursive feature elimination (RFE) were used. Clinical, AP, PP, and combined radiomics models were established using machine learning algorithms (support vector machine [SVM], logistic regression [LR], and logistic regression-least absolute shrinkage and selection operator [LR-LASSO]) and their discriminatory efficacy assessed and compared.The independent sample t test, Mann-Whitney U test, Chi-square test, regression analysis, receiver operating characteristic curve (ROC) analysis, Pearson correlation analysis, the Delong test. A P value < 0.05 was considered statistically significant.In the validation cohort, the combined radiomics model (area under the curve [AUC] = 0.908, 95% confidence interval [CI]: 0.831-0.985) showed the highest diagnostic performance. The AUCs of the PP (AUC = 0.879, 95% CI: 0.779-0.979) and combined radiomics models were significantly higher than that of clinical model (AUC = 0.685, 95% CI: 0.526-0.844). There were no significant differences in AUC between AP or PP radiomics model and combined radiomics model (P = 0.286, 0.180 and 0.543).MRI radiomics models may be useful for discriminating DPHCC from non-DPHCC before surgery.4 TECHNICAL EFFICACY: Stage 2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
聂学雨发布了新的文献求助10
2秒前
可爱的函函应助南宫若翠采纳,获得10
4秒前
清秀成威发布了新的文献求助10
5秒前
灵巧的十八完成签到 ,获得积分10
6秒前
6秒前
姜宁完成签到,获得积分20
7秒前
幸福胡萝卜完成签到,获得积分10
7秒前
千亦应助八森木采纳,获得20
10秒前
哎呀发布了新的文献求助10
10秒前
songjin完成签到 ,获得积分10
11秒前
12秒前
SaturnY完成签到,获得积分10
13秒前
清秀成威完成签到,获得积分10
13秒前
14秒前
乐乐应助顺心绮兰采纳,获得10
19秒前
20秒前
脑洞疼应助卫化蛹采纳,获得10
21秒前
21秒前
Yep0672发布了新的文献求助10
21秒前
22秒前
22秒前
在水一方应助闪闪灵雁采纳,获得10
24秒前
24秒前
平头哥哥完成签到 ,获得积分10
25秒前
25秒前
顺利毕业发布了新的文献求助10
25秒前
26秒前
lili完成签到,获得积分10
26秒前
SciGPT应助快乐的一刀采纳,获得10
28秒前
豆子发布了新的文献求助10
29秒前
Fann发布了新的文献求助10
29秒前
32秒前
zhinian28完成签到,获得积分10
35秒前
evilbatuu完成签到,获得积分10
37秒前
科研通AI2S应助迷人的灵萱采纳,获得10
38秒前
38秒前
38秒前
38秒前
39秒前
小白先生完成签到,获得积分10
42秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135044
求助须知:如何正确求助?哪些是违规求助? 2786005
关于积分的说明 7774726
捐赠科研通 2441825
什么是DOI,文献DOI怎么找? 1298217
科研通“疑难数据库(出版商)”最低求助积分说明 625088
版权声明 600825