Image-based deep learning identifies glioblastoma risk groups with genomic and transcriptomic heterogeneity: a multi-center study

放射基因组学 胶质母细胞瘤 列线图 肿瘤科 医学 计算生物学 转录组 神经组阅片室 生物 内科学 人工智能 生物信息学 癌症研究 基因 计算机科学 神经学 神经科学 遗传学 无线电技术 基因表达
作者
Jing Yan,Qiuchang Sun,Xiangliang Tan,Chaofeng Liang,Hongmin Bai,Wenchao Duan,Tianhao Mu,Yang Guo,Yuning Qiu,Weiwei Wang,Qiaoli Yao,Dongling Pei,Yuanshen Zhao,Danni Liu,Jingxian Duan,Shifu Chen,Chen Sun,Wenqing Wang,Zhen Liu,Xuanke Hong
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:33 (2): 904-914 被引量:17
标识
DOI:10.1007/s00330-022-09066-x
摘要

ObjectivesTo develop and validate a deep learning imaging signature (DLIS) for risk stratification in patients with multiforme (GBM), and to investigate the biological pathways and genetic alterations underlying the DLIS.MethodsThe DLIS was developed from multi-parametric MRI based on a training set (n = 600) and validated on an internal validation set (n = 164), an external test set 1 (n = 100), an external test set 2 (n = 161), and a public TCIA set (n = 88). A co-profiling framework based on a radiogenomics analysis dataset (n = 127) using multiscale high-dimensional data, including imaging, transcriptome, and genome, was established to uncover the biological pathways and genetic alterations underpinning the DLIS.ResultsThe DLIS was associated with survival (log-rank p < 0.001) and was an independent predictor (p < 0.001). The integrated nomogram incorporating the DLIS achieved improved C indices than the clinicomolecular nomogram (net reclassification improvement 0.39, p < 0.001). DLIS significantly correlated with core pathways of GBM (apoptosis and cell cycle-related P53 and RB pathways, and cell proliferation-related RTK pathway), as well as key genetic alterations (del_CDNK2A). The prognostic value of DLIS-correlated genes was externally confirmed on TCGA/CGGA sets (p < 0.01).ConclusionsOur study offers a biologically interpretable deep learning predictor of survival outcomes in patients with GBM, which is crucial for better understanding GBM patient’s prognosis and guiding individualized treatment.Key Points • MRI-based deep learning imaging signature (DLIS) stratifies GBM into risk groups with distinct molecular characteristics. • DLIS is associated with P53, RB, and RTK pathways and del_CDNK2A mutation. • The prognostic value of DLIS-correlated pathway genes is externally demonstrated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
筱曼完成签到,获得积分10
1秒前
1秒前
宁山河发布了新的文献求助10
1秒前
cmh完成签到,获得积分10
2秒前
慕青应助隐形的小土豆采纳,获得10
2秒前
领导范儿应助guoguo采纳,获得10
3秒前
英姑应助乳酸菌小面包采纳,获得10
3秒前
Akim应助shi采纳,获得10
3秒前
orixero应助exile采纳,获得10
4秒前
华仔应助校长采纳,获得10
4秒前
梓唯忧完成签到 ,获得积分10
5秒前
5秒前
5秒前
cmh发布了新的文献求助10
5秒前
大爱仙尊发布了新的文献求助10
5秒前
zhangxin完成签到,获得积分10
5秒前
7秒前
7秒前
遇上就这样吧给喝可乐的猫的求助进行了留言
8秒前
crystal发布了新的文献求助10
9秒前
海风完成签到,获得积分10
9秒前
静汉完成签到,获得积分10
9秒前
10秒前
yy完成签到 ,获得积分10
10秒前
10秒前
宁山河完成签到,获得积分10
11秒前
打打应助geyunjie采纳,获得10
11秒前
从容的无极完成签到,获得积分10
12秒前
健忘雁易完成签到 ,获得积分20
12秒前
12秒前
12秒前
13秒前
14秒前
114514完成签到,获得积分10
14秒前
yqb发布了新的文献求助10
14秒前
14秒前
14秒前
科研通AI5应助就是我喽采纳,获得30
14秒前
mumu发布了新的文献求助10
15秒前
SYLH应助布吉岛呀采纳,获得10
15秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842341
求助须知:如何正确求助?哪些是违规求助? 3384447
关于积分的说明 10534846
捐赠科研通 3104952
什么是DOI,文献DOI怎么找? 1709863
邀请新用户注册赠送积分活动 823415
科研通“疑难数据库(出版商)”最低求助积分说明 774059