Image-based deep learning identifies glioblastoma risk groups with genomic and transcriptomic heterogeneity: a multi-center study

放射基因组学 胶质母细胞瘤 列线图 肿瘤科 医学 计算生物学 转录组 神经组阅片室 生物 内科学 人工智能 生物信息学 癌症研究 基因 计算机科学 神经学 神经科学 遗传学 无线电技术 基因表达
作者
Jing Yan,Qiuchang Sun,Xiangliang Tan,Chaofeng Liang,Hongmin Bai,Wenchao Duan,Tianhao Mu,Yang Guo,Yuning Qiu,Weiwei Wang,Qiaoli Yao,Dongling Pei,Yuanshen Zhao,Danni Liu,Jingxian Duan,Shifu Chen,Chen Sun,Wenqing Wang,Zhen Liu,Xuanke Hong,Xiangxiang Wang,Yu Guo,Yikai Xu,Xianzhi Liu,Jingliang Cheng,Zhicheng Li,Zhenyu Zhang
出处
期刊:European Radiology [Springer Nature]
卷期号:33 (2): 904-914 被引量:8
标识
DOI:10.1007/s00330-022-09066-x
摘要

ObjectivesTo develop and validate a deep learning imaging signature (DLIS) for risk stratification in patients with multiforme (GBM), and to investigate the biological pathways and genetic alterations underlying the DLIS.MethodsThe DLIS was developed from multi-parametric MRI based on a training set (n = 600) and validated on an internal validation set (n = 164), an external test set 1 (n = 100), an external test set 2 (n = 161), and a public TCIA set (n = 88). A co-profiling framework based on a radiogenomics analysis dataset (n = 127) using multiscale high-dimensional data, including imaging, transcriptome, and genome, was established to uncover the biological pathways and genetic alterations underpinning the DLIS.ResultsThe DLIS was associated with survival (log-rank p < 0.001) and was an independent predictor (p < 0.001). The integrated nomogram incorporating the DLIS achieved improved C indices than the clinicomolecular nomogram (net reclassification improvement 0.39, p < 0.001). DLIS significantly correlated with core pathways of GBM (apoptosis and cell cycle-related P53 and RB pathways, and cell proliferation-related RTK pathway), as well as key genetic alterations (del_CDNK2A). The prognostic value of DLIS-correlated genes was externally confirmed on TCGA/CGGA sets (p < 0.01).ConclusionsOur study offers a biologically interpretable deep learning predictor of survival outcomes in patients with GBM, which is crucial for better understanding GBM patient’s prognosis and guiding individualized treatment.Key Points • MRI-based deep learning imaging signature (DLIS) stratifies GBM into risk groups with distinct molecular characteristics. • DLIS is associated with P53, RB, and RTK pathways and del_CDNK2A mutation. • The prognostic value of DLIS-correlated pathway genes is externally demonstrated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
abo发布了新的文献求助10
刚刚
Mrs小段完成签到,获得积分10
1秒前
青青发布了新的文献求助30
2秒前
怡然灵凡发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
leslie发布了新的文献求助10
4秒前
麻花完成签到,获得积分10
4秒前
过时的谷丝完成签到,获得积分10
4秒前
4秒前
婷小胖完成签到,获得积分10
4秒前
鹰击长空发布了新的文献求助10
5秒前
小蒋发布了新的文献求助10
5秒前
bobzx12完成签到,获得积分10
7秒前
8秒前
飞星发布了新的文献求助30
8秒前
彭a发布了新的文献求助10
9秒前
10秒前
科研通AI2S应助落后的冬寒采纳,获得10
10秒前
10秒前
情怀应助小醉橘子采纳,获得30
10秒前
包谷林完成签到,获得积分10
11秒前
激动的慕凝应助zhangting采纳,获得10
12秒前
ruochenzu发布了新的文献求助10
13秒前
as完成签到,获得积分20
14秒前
15秒前
Inanopig发布了新的文献求助10
15秒前
斯文败类应助张思涵采纳,获得10
15秒前
一一应助jgs采纳,获得50
16秒前
搜集达人应助叶远望采纳,获得10
17秒前
醉熏的书易完成签到,获得积分10
18秒前
18秒前
小蘑菇应助Zzz采纳,获得10
18秒前
SciGPT应助微笑的沂采纳,获得10
19秒前
19秒前
ziguangrong关注了科研通微信公众号
19秒前
于帆完成签到 ,获得积分20
21秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313258
求助须知:如何正确求助?哪些是违规求助? 2945620
关于积分的说明 8526418
捐赠科研通 2621404
什么是DOI,文献DOI怎么找? 1433530
科研通“疑难数据库(出版商)”最低求助积分说明 665037
邀请新用户注册赠送积分活动 650548