Image-based deep learning identifies glioblastoma risk groups with genomic and transcriptomic heterogeneity: a multi-center study

放射基因组学 胶质母细胞瘤 列线图 肿瘤科 医学 计算生物学 转录组 神经组阅片室 生物 内科学 人工智能 生物信息学 癌症研究 基因 计算机科学 神经学 神经科学 遗传学 无线电技术 基因表达
作者
Jing Yan,Qiuchang Sun,Xiangliang Tan,Chaofeng Liang,Hongmin Bai,Wenchao Duan,Tianhao Mu,Yang Guo,Yuning Qiu,Weiwei Wang,Qiaoli Yao,Dongling Pei,Yuanshen Zhao,Danni Liu,Jingxian Duan,Shifu Chen,Chen Sun,Wenqing Wang,Zhen Liu,Xuanke Hong
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:33 (2): 904-914 被引量:17
标识
DOI:10.1007/s00330-022-09066-x
摘要

ObjectivesTo develop and validate a deep learning imaging signature (DLIS) for risk stratification in patients with multiforme (GBM), and to investigate the biological pathways and genetic alterations underlying the DLIS.MethodsThe DLIS was developed from multi-parametric MRI based on a training set (n = 600) and validated on an internal validation set (n = 164), an external test set 1 (n = 100), an external test set 2 (n = 161), and a public TCIA set (n = 88). A co-profiling framework based on a radiogenomics analysis dataset (n = 127) using multiscale high-dimensional data, including imaging, transcriptome, and genome, was established to uncover the biological pathways and genetic alterations underpinning the DLIS.ResultsThe DLIS was associated with survival (log-rank p < 0.001) and was an independent predictor (p < 0.001). The integrated nomogram incorporating the DLIS achieved improved C indices than the clinicomolecular nomogram (net reclassification improvement 0.39, p < 0.001). DLIS significantly correlated with core pathways of GBM (apoptosis and cell cycle-related P53 and RB pathways, and cell proliferation-related RTK pathway), as well as key genetic alterations (del_CDNK2A). The prognostic value of DLIS-correlated genes was externally confirmed on TCGA/CGGA sets (p < 0.01).ConclusionsOur study offers a biologically interpretable deep learning predictor of survival outcomes in patients with GBM, which is crucial for better understanding GBM patient’s prognosis and guiding individualized treatment.Key Points • MRI-based deep learning imaging signature (DLIS) stratifies GBM into risk groups with distinct molecular characteristics. • DLIS is associated with P53, RB, and RTK pathways and del_CDNK2A mutation. • The prognostic value of DLIS-correlated pathway genes is externally demonstrated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鲤鱼紫易完成签到,获得积分10
1秒前
Orange应助土豪的跳跳糖采纳,获得10
1秒前
LEMONS应助cola采纳,获得10
2秒前
2秒前
123完成签到 ,获得积分10
2秒前
快乐的蓝完成签到 ,获得积分10
2秒前
ccxb1014ft完成签到,获得积分10
3秒前
豆包发布了新的文献求助10
3秒前
专注梦之发布了新的文献求助10
3秒前
HJJHJH发布了新的文献求助50
3秒前
chenshen发布了新的文献求助10
3秒前
bluechen800205完成签到,获得积分10
4秒前
yantianliang发布了新的文献求助10
4秒前
JamesPei应助怕黑的妙旋采纳,获得10
5秒前
顾矜应助小线团黑桃采纳,获得10
5秒前
6秒前
6秒前
7秒前
朱大头发布了新的文献求助30
7秒前
标致诗蕾完成签到,获得积分10
7秒前
LiZhenhua发布了新的文献求助10
8秒前
Ava应助ihtw采纳,获得10
9秒前
9秒前
豆包完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
11秒前
蓝天白云发布了新的文献求助10
11秒前
华仔应助343386625采纳,获得10
12秒前
12秒前
smy发布了新的文献求助10
12秒前
LEMONS应助rktrain2023采纳,获得10
13秒前
两只老虎发布了新的文献求助10
14秒前
李某人发布了新的文献求助20
14秒前
懵懂的土豆完成签到,获得积分10
15秒前
15秒前
16秒前
幸福萝发布了新的文献求助10
16秒前
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954162
求助须知:如何正确求助?哪些是违规求助? 3500212
关于积分的说明 11098471
捐赠科研通 3230734
什么是DOI,文献DOI怎么找? 1786110
邀请新用户注册赠送积分活动 869824
科研通“疑难数据库(出版商)”最低求助积分说明 801625