A Method for Evaluating the Green Economic Efficiency of Resource-Based Cities Based on Neural Network Improved DEA Model

排名(信息检索) 计算机科学 人工神经网络 数据包络分析 效率 点(几何) 生产力 计量经济学 数学优化 人工智能 统计 数学 经济 几何学 估计员 宏观经济学
作者
Zhifeng Shen,Ning Liu,Xialing Li,Zhengguang Kang
出处
期刊:Computational Intelligence and Neuroscience [Hindawi Limited]
卷期号:2022: 1-11 被引量:5
标识
DOI:10.1155/2022/9521107
摘要

In this study, we use BP neural network to improve the DEA model to conduct in-depth research and analysis on the method of green economic efficiency evaluation of resource-based cities. The traditional DEA cannot make ranking and analysis of effective units, which affects the accuracy of empirical analysis. Accordingly, the BP-DEA model is introduced to further conduct a comparative eco-efficiency analysis of relatively effective provinces. In this study, the optimal inputs and outputs are calculated by DEA, and further, the BP neural network is used to fit the functional relationship between the optimal inputs and outputs, and by adding variables, the trained neural network can be used for the prediction of the optimal outputs. In this study, the BP-DEA model is used to empirically investigate the temporal evolution trend, spatial differences, and efficiency differences in eco-efficiency. Meanwhile, breaking through the limitation that DEA can only calculate regional efficiency values, this study combines the Malmquist index to compare and decompose the eco-efficiency of different provinces to analyze the sources of total factor productivity changes. The results show that the method can clarify the gap between the actual operation of each indicator and the reference point; it can identify how much room for improvement still needs to be made for each indicator, and it can also determine whether each city should be rewarded or penalized and its specific amount. Finally, based on the evaluation of eco-efficiency and the main constraints, corresponding policy recommendations are proposed. Finally, based on the evaluation results of the BP-DEA method, this study analyzes the overall efficiency improvement of cities in the two study areas in three dimensions: urbanization construction, ecology, and economic development put forward seven types of urban efficiency improvement and propose targeted urban development suggestions according to regional characteristics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dawn发布了新的文献求助30
2秒前
juan发布了新的文献求助10
2秒前
在水一方应助忘忧草采纳,获得10
3秒前
独特觅翠应助WoxiC采纳,获得10
3秒前
大模型应助Zbzb采纳,获得10
3秒前
科研通AI2S应助加贝采纳,获得10
4秒前
李爱国应助冷静雅香采纳,获得10
5秒前
小葛完成签到,获得积分10
5秒前
糟糕的蘑菇完成签到,获得积分10
6秒前
哎呀发布了新的文献求助10
6秒前
无边落木完成签到,获得积分10
7秒前
蓁66完成签到,获得积分10
10秒前
沐沐君完成签到,获得积分10
12秒前
大个应助shawn采纳,获得10
12秒前
12秒前
不配.应助冲鸭采纳,获得10
12秒前
负责的大米完成签到,获得积分10
13秒前
15秒前
李健应助沐沐君采纳,获得10
15秒前
深情丸子完成签到,获得积分10
16秒前
16秒前
lql发布了新的文献求助10
16秒前
脑洞疼应助漫画采纳,获得10
17秒前
18秒前
科研通AI2S应助123采纳,获得10
19秒前
lvsehx完成签到,获得积分10
19秒前
111完成签到 ,获得积分10
19秒前
20秒前
dsd发布了新的文献求助10
21秒前
lvsehx发布了新的文献求助10
22秒前
张杰发布了新的文献求助10
22秒前
跳跳虎发布了新的文献求助10
23秒前
24秒前
24秒前
hzs发布了新的文献求助10
24秒前
24秒前
jevon应助tgene采纳,获得10
24秒前
26秒前
KEHUGE发布了新的文献求助10
27秒前
慕青应助WoxiC采纳,获得10
27秒前
高分求助中
Earth System Geophysics 1000
Studies on the inheritance of some characters in rice Oryza sativa L 600
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
Language injustice and social equity in EMI policies in China 500
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3207057
求助须知:如何正确求助?哪些是违规求助? 2856477
关于积分的说明 8104841
捐赠科研通 2521574
什么是DOI,文献DOI怎么找? 1354913
科研通“疑难数据库(出版商)”最低求助积分说明 642098
邀请新用户注册赠送积分活动 613343