A Method for Evaluating the Green Economic Efficiency of Resource-Based Cities Based on Neural Network Improved DEA Model

排名(信息检索) 计算机科学 人工神经网络 数据包络分析 效率 点(几何) 生产力 计量经济学 数学优化 人工智能 统计 数学 经济 几何学 估计员 宏观经济学
作者
Zhifeng Shen,Ning Liu,Xialing Li,Zhengguang Kang
出处
期刊:Computational Intelligence and Neuroscience [Hindawi Limited]
卷期号:2022: 1-11 被引量:5
标识
DOI:10.1155/2022/9521107
摘要

In this study, we use BP neural network to improve the DEA model to conduct in-depth research and analysis on the method of green economic efficiency evaluation of resource-based cities. The traditional DEA cannot make ranking and analysis of effective units, which affects the accuracy of empirical analysis. Accordingly, the BP-DEA model is introduced to further conduct a comparative eco-efficiency analysis of relatively effective provinces. In this study, the optimal inputs and outputs are calculated by DEA, and further, the BP neural network is used to fit the functional relationship between the optimal inputs and outputs, and by adding variables, the trained neural network can be used for the prediction of the optimal outputs. In this study, the BP-DEA model is used to empirically investigate the temporal evolution trend, spatial differences, and efficiency differences in eco-efficiency. Meanwhile, breaking through the limitation that DEA can only calculate regional efficiency values, this study combines the Malmquist index to compare and decompose the eco-efficiency of different provinces to analyze the sources of total factor productivity changes. The results show that the method can clarify the gap between the actual operation of each indicator and the reference point; it can identify how much room for improvement still needs to be made for each indicator, and it can also determine whether each city should be rewarded or penalized and its specific amount. Finally, based on the evaluation of eco-efficiency and the main constraints, corresponding policy recommendations are proposed. Finally, based on the evaluation results of the BP-DEA method, this study analyzes the overall efficiency improvement of cities in the two study areas in three dimensions: urbanization construction, ecology, and economic development put forward seven types of urban efficiency improvement and propose targeted urban development suggestions according to regional characteristics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
刚刚
long发布了新的文献求助10
刚刚
犬来八荒发布了新的文献求助10
1秒前
张飞飞飞飞飞应助hahaha采纳,获得10
1秒前
合适雅柏发布了新的文献求助10
1秒前
2秒前
活力冬云发布了新的文献求助10
3秒前
4秒前
高夕硕完成签到,获得积分10
4秒前
老流氓发布了新的文献求助10
5秒前
困困包应助wang1780采纳,获得10
5秒前
5秒前
yalin完成签到,获得积分10
6秒前
唐小刚完成签到,获得积分10
6秒前
yeah完成签到,获得积分10
7秒前
freya发布了新的文献求助30
7秒前
冯大哥完成签到,获得积分10
7秒前
科研通AI2S应助柚吱采纳,获得10
7秒前
tom完成签到,获得积分10
9秒前
脸小呆呆发布了新的文献求助10
10秒前
10秒前
羊羊羊发布了新的文献求助10
11秒前
yuan1226完成签到 ,获得积分10
12秒前
小喵不上课完成签到,获得积分10
13秒前
13秒前
CipherSage应助安静秋柔采纳,获得10
14秒前
15秒前
sleep应助Augenstern采纳,获得10
15秒前
15秒前
Hinsen应助lky采纳,获得10
17秒前
回忆敌不过尿意完成签到 ,获得积分10
17秒前
追玥行完成签到 ,获得积分10
18秒前
千千万万发布了新的文献求助10
20秒前
20秒前
21秒前
22秒前
22秒前
Mic应助燕儿采纳,获得30
22秒前
23秒前
23秒前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5501547
求助须知:如何正确求助?哪些是违规求助? 4597799
关于积分的说明 14460967
捐赠科研通 4531320
什么是DOI,文献DOI怎么找? 2483315
邀请新用户注册赠送积分活动 1466799
关于科研通互助平台的介绍 1439433