A Method for Evaluating the Green Economic Efficiency of Resource-Based Cities Based on Neural Network Improved DEA Model

排名(信息检索) 计算机科学 人工神经网络 数据包络分析 效率 点(几何) 生产力 计量经济学 数学优化 人工智能 统计 数学 经济 几何学 估计员 宏观经济学
作者
Zhifeng Shen,Ning Liu,Xialing Li,Zhengguang Kang
出处
期刊:Computational Intelligence and Neuroscience [Hindawi Limited]
卷期号:2022: 1-11 被引量:5
标识
DOI:10.1155/2022/9521107
摘要

In this study, we use BP neural network to improve the DEA model to conduct in-depth research and analysis on the method of green economic efficiency evaluation of resource-based cities. The traditional DEA cannot make ranking and analysis of effective units, which affects the accuracy of empirical analysis. Accordingly, the BP-DEA model is introduced to further conduct a comparative eco-efficiency analysis of relatively effective provinces. In this study, the optimal inputs and outputs are calculated by DEA, and further, the BP neural network is used to fit the functional relationship between the optimal inputs and outputs, and by adding variables, the trained neural network can be used for the prediction of the optimal outputs. In this study, the BP-DEA model is used to empirically investigate the temporal evolution trend, spatial differences, and efficiency differences in eco-efficiency. Meanwhile, breaking through the limitation that DEA can only calculate regional efficiency values, this study combines the Malmquist index to compare and decompose the eco-efficiency of different provinces to analyze the sources of total factor productivity changes. The results show that the method can clarify the gap between the actual operation of each indicator and the reference point; it can identify how much room for improvement still needs to be made for each indicator, and it can also determine whether each city should be rewarded or penalized and its specific amount. Finally, based on the evaluation of eco-efficiency and the main constraints, corresponding policy recommendations are proposed. Finally, based on the evaluation results of the BP-DEA method, this study analyzes the overall efficiency improvement of cities in the two study areas in three dimensions: urbanization construction, ecology, and economic development put forward seven types of urban efficiency improvement and propose targeted urban development suggestions according to regional characteristics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Einsree发布了新的文献求助10
1秒前
研友_8opMyL完成签到,获得积分10
1秒前
可爱的函函应助ashley采纳,获得10
3秒前
YFL发布了新的文献求助10
3秒前
思源应助zhixian采纳,获得10
3秒前
MchemG应助白开水采纳,获得20
3秒前
SciGPT应助sylus采纳,获得10
4秒前
hanqianqian发布了新的文献求助10
4秒前
所所应助小琪采纳,获得10
4秒前
yyanxuemin919发布了新的文献求助10
5秒前
Tom47完成签到,获得积分10
6秒前
timick完成签到,获得积分10
8秒前
11秒前
12秒前
hanqianqian完成签到,获得积分10
12秒前
Jasper应助泷生采纳,获得10
14秒前
111发布了新的文献求助10
15秒前
爆米花应助Liu采纳,获得10
17秒前
17秒前
Youdge完成签到 ,获得积分10
18秒前
嘿嘿发布了新的文献求助10
18秒前
认真初之发布了新的文献求助10
19秒前
领导范儿应助111采纳,获得10
20秒前
22秒前
23秒前
24秒前
科研通AI2S应助无尘采纳,获得10
26秒前
搜集达人应助无尘采纳,获得10
26秒前
Deadman完成签到,获得积分10
26秒前
嘿嘿发布了新的文献求助10
28秒前
壮观问寒发布了新的文献求助10
29秒前
好运加满完成签到 ,获得积分10
29秒前
乐乐应助科研通管家采纳,获得10
29秒前
完美世界应助科研通管家采纳,获得10
29秒前
华仔应助科研通管家采纳,获得10
29秒前
情怀应助科研通管家采纳,获得10
29秒前
浮游应助科研通管家采纳,获得10
29秒前
29秒前
只争朝夕应助科研通管家采纳,获得10
30秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563539
求助须知:如何正确求助?哪些是违规求助? 4648430
关于积分的说明 14684815
捐赠科研通 4590392
什么是DOI,文献DOI怎么找? 2518479
邀请新用户注册赠送积分活动 1491143
关于科研通互助平台的介绍 1462432