A Method for Evaluating the Green Economic Efficiency of Resource-Based Cities Based on Neural Network Improved DEA Model

排名(信息检索) 计算机科学 人工神经网络 数据包络分析 效率 点(几何) 生产力 计量经济学 数学优化 人工智能 统计 数学 经济 几何学 宏观经济学 估计员
作者
Zhifeng Shen,Ning Liu,Xialing Li,Zhengguang Kang
出处
期刊:Computational Intelligence and Neuroscience [Hindawi Limited]
卷期号:2022: 1-11 被引量:5
标识
DOI:10.1155/2022/9521107
摘要

In this study, we use BP neural network to improve the DEA model to conduct in-depth research and analysis on the method of green economic efficiency evaluation of resource-based cities. The traditional DEA cannot make ranking and analysis of effective units, which affects the accuracy of empirical analysis. Accordingly, the BP-DEA model is introduced to further conduct a comparative eco-efficiency analysis of relatively effective provinces. In this study, the optimal inputs and outputs are calculated by DEA, and further, the BP neural network is used to fit the functional relationship between the optimal inputs and outputs, and by adding variables, the trained neural network can be used for the prediction of the optimal outputs. In this study, the BP-DEA model is used to empirically investigate the temporal evolution trend, spatial differences, and efficiency differences in eco-efficiency. Meanwhile, breaking through the limitation that DEA can only calculate regional efficiency values, this study combines the Malmquist index to compare and decompose the eco-efficiency of different provinces to analyze the sources of total factor productivity changes. The results show that the method can clarify the gap between the actual operation of each indicator and the reference point; it can identify how much room for improvement still needs to be made for each indicator, and it can also determine whether each city should be rewarded or penalized and its specific amount. Finally, based on the evaluation of eco-efficiency and the main constraints, corresponding policy recommendations are proposed. Finally, based on the evaluation results of the BP-DEA method, this study analyzes the overall efficiency improvement of cities in the two study areas in three dimensions: urbanization construction, ecology, and economic development put forward seven types of urban efficiency improvement and propose targeted urban development suggestions according to regional characteristics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
幸运的蜥蜴完成签到,获得积分10
刚刚
小务完成签到,获得积分10
1秒前
1秒前
充电宝应助xixidong采纳,获得50
2秒前
珺儿发布了新的文献求助10
2秒前
3秒前
日新又新发布了新的文献求助10
3秒前
12发布了新的文献求助10
3秒前
4秒前
萱棚发布了新的文献求助10
5秒前
123完成签到 ,获得积分10
5秒前
Fine发布了新的文献求助10
7秒前
7秒前
8秒前
珺儿完成签到,获得积分10
10秒前
11秒前
张靖雯完成签到,获得积分20
12秒前
斯文败类应助小小采纳,获得20
12秒前
13秒前
吴慧琼发布了新的文献求助10
14秒前
日新又新完成签到,获得积分10
15秒前
危机的安容完成签到,获得积分10
15秒前
16秒前
xuli21315发布了新的文献求助30
16秒前
17秒前
mp5完成签到,获得积分10
17秒前
18秒前
轻松的贞完成签到,获得积分10
18秒前
落后猫咪发布了新的文献求助10
18秒前
donzang完成签到,获得积分10
19秒前
20秒前
20秒前
大圈圈发布了新的文献求助10
21秒前
英俊的铭应助han采纳,获得10
22秒前
妮妮发布了新的文献求助10
22秒前
tangtang完成签到 ,获得积分10
24秒前
24秒前
米米完成签到 ,获得积分10
24秒前
ding应助z001398采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601653
求助须知:如何正确求助?哪些是违规求助? 4687052
关于积分的说明 14847515
捐赠科研通 4681645
什么是DOI,文献DOI怎么找? 2539451
邀请新用户注册赠送积分活动 1506355
关于科研通互助平台的介绍 1471299