清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A Method for Evaluating the Green Economic Efficiency of Resource-Based Cities Based on Neural Network Improved DEA Model

排名(信息检索) 计算机科学 人工神经网络 数据包络分析 效率 点(几何) 生产力 计量经济学 数学优化 人工智能 统计 数学 经济 几何学 估计员 宏观经济学
作者
Zhifeng Shen,Ning Liu,Xialing Li,Zhengguang Kang
出处
期刊:Computational Intelligence and Neuroscience [Hindawi Limited]
卷期号:2022: 1-11 被引量:5
标识
DOI:10.1155/2022/9521107
摘要

In this study, we use BP neural network to improve the DEA model to conduct in-depth research and analysis on the method of green economic efficiency evaluation of resource-based cities. The traditional DEA cannot make ranking and analysis of effective units, which affects the accuracy of empirical analysis. Accordingly, the BP-DEA model is introduced to further conduct a comparative eco-efficiency analysis of relatively effective provinces. In this study, the optimal inputs and outputs are calculated by DEA, and further, the BP neural network is used to fit the functional relationship between the optimal inputs and outputs, and by adding variables, the trained neural network can be used for the prediction of the optimal outputs. In this study, the BP-DEA model is used to empirically investigate the temporal evolution trend, spatial differences, and efficiency differences in eco-efficiency. Meanwhile, breaking through the limitation that DEA can only calculate regional efficiency values, this study combines the Malmquist index to compare and decompose the eco-efficiency of different provinces to analyze the sources of total factor productivity changes. The results show that the method can clarify the gap between the actual operation of each indicator and the reference point; it can identify how much room for improvement still needs to be made for each indicator, and it can also determine whether each city should be rewarded or penalized and its specific amount. Finally, based on the evaluation of eco-efficiency and the main constraints, corresponding policy recommendations are proposed. Finally, based on the evaluation results of the BP-DEA method, this study analyzes the overall efficiency improvement of cities in the two study areas in three dimensions: urbanization construction, ecology, and economic development put forward seven types of urban efficiency improvement and propose targeted urban development suggestions according to regional characteristics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迷茫的一代完成签到,获得积分10
26秒前
蝎子莱莱xth完成签到,获得积分10
28秒前
氢锂钠钾铷铯钫完成签到,获得积分10
33秒前
Square完成签到,获得积分10
40秒前
shhoing应助科研通管家采纳,获得10
45秒前
小马甲应助科研通管家采纳,获得10
45秒前
1分钟前
npknpk发布了新的文献求助10
1分钟前
gszy1975完成签到,获得积分10
2分钟前
Gryphon应助科研通管家采纳,获得10
2分钟前
轻松幼南完成签到 ,获得积分10
4分钟前
shhoing应助科研通管家采纳,获得10
4分钟前
npknpk完成签到,获得积分10
4分钟前
Orange应助Ajay采纳,获得30
5分钟前
雪山飞龙完成签到,获得积分10
6分钟前
shhoing应助科研通管家采纳,获得10
6分钟前
Ajay完成签到 ,获得积分10
6分钟前
Klaus完成签到 ,获得积分10
6分钟前
胖小羊完成签到 ,获得积分10
7分钟前
方白秋完成签到,获得积分0
7分钟前
7分钟前
Ajay发布了新的文献求助30
7分钟前
CipherSage应助丽海张采纳,获得30
8分钟前
赵一完成签到 ,获得积分10
8分钟前
8分钟前
Prometheusss发布了新的文献求助10
8分钟前
丽海张发布了新的文献求助30
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
shhoing应助科研通管家采纳,获得10
8分钟前
英姑应助科研通管家采纳,获得10
8分钟前
zsmj23完成签到 ,获得积分0
8分钟前
文静身边充满小确幸完成签到 ,获得积分10
9分钟前
9分钟前
Prometheusss发布了新的文献求助10
9分钟前
Prometheusss完成签到,获得积分10
9分钟前
9分钟前
深海理疗发布了新的文献求助10
9分钟前
al完成签到 ,获得积分0
9分钟前
Prometheusss发布了新的文献求助10
10分钟前
下文献的蜉蝣完成签到 ,获得积分10
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5561587
求助须知:如何正确求助?哪些是违规求助? 4646663
关于积分的说明 14678782
捐赠科研通 4588007
什么是DOI,文献DOI怎么找? 2517273
邀请新用户注册赠送积分活动 1490557
关于科研通互助平台的介绍 1461590