A Method for Evaluating the Green Economic Efficiency of Resource-Based Cities Based on Neural Network Improved DEA Model

排名(信息检索) 计算机科学 人工神经网络 数据包络分析 效率 点(几何) 生产力 计量经济学 数学优化 人工智能 统计 数学 经济 几何学 估计员 宏观经济学
作者
Zhifeng Shen,Ning Liu,Xialing Li,Zhengguang Kang
出处
期刊:Computational Intelligence and Neuroscience [Hindawi Limited]
卷期号:2022: 1-11 被引量:5
标识
DOI:10.1155/2022/9521107
摘要

In this study, we use BP neural network to improve the DEA model to conduct in-depth research and analysis on the method of green economic efficiency evaluation of resource-based cities. The traditional DEA cannot make ranking and analysis of effective units, which affects the accuracy of empirical analysis. Accordingly, the BP-DEA model is introduced to further conduct a comparative eco-efficiency analysis of relatively effective provinces. In this study, the optimal inputs and outputs are calculated by DEA, and further, the BP neural network is used to fit the functional relationship between the optimal inputs and outputs, and by adding variables, the trained neural network can be used for the prediction of the optimal outputs. In this study, the BP-DEA model is used to empirically investigate the temporal evolution trend, spatial differences, and efficiency differences in eco-efficiency. Meanwhile, breaking through the limitation that DEA can only calculate regional efficiency values, this study combines the Malmquist index to compare and decompose the eco-efficiency of different provinces to analyze the sources of total factor productivity changes. The results show that the method can clarify the gap between the actual operation of each indicator and the reference point; it can identify how much room for improvement still needs to be made for each indicator, and it can also determine whether each city should be rewarded or penalized and its specific amount. Finally, based on the evaluation of eco-efficiency and the main constraints, corresponding policy recommendations are proposed. Finally, based on the evaluation results of the BP-DEA method, this study analyzes the overall efficiency improvement of cities in the two study areas in three dimensions: urbanization construction, ecology, and economic development put forward seven types of urban efficiency improvement and propose targeted urban development suggestions according to regional characteristics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
默言晨曦完成签到,获得积分10
1秒前
2秒前
杨佳霖发布了新的文献求助10
3秒前
斯文败类应助一枝安采纳,获得10
3秒前
4秒前
5秒前
6秒前
沙心应助搞怪的紫雪采纳,获得10
6秒前
犹豫梨愁完成签到,获得积分10
6秒前
7秒前
cometx完成签到 ,获得积分20
8秒前
aldehyde应助李JJ采纳,获得10
9秒前
搞怪的紫雪完成签到,获得积分10
10秒前
mason完成签到,获得积分10
10秒前
哈哈哈发布了新的文献求助10
11秒前
nann完成签到,获得积分10
12秒前
12秒前
yibo完成签到,获得积分10
12秒前
香蕉觅云应助猕猴桃采纳,获得10
12秒前
echoMe完成签到,获得积分10
12秒前
15秒前
守墓人完成签到 ,获得积分10
15秒前
16秒前
李健应助穆大叔采纳,获得10
16秒前
周杰完成签到,获得积分10
16秒前
Yue发布了新的文献求助10
17秒前
无限的千琴完成签到,获得积分10
18秒前
18秒前
海洋不快乐完成签到,获得积分10
21秒前
22秒前
123完成签到,获得积分10
22秒前
22秒前
again完成签到,获得积分10
23秒前
23秒前
24秒前
繁荣的菲音完成签到,获得积分10
25秒前
哈哈哈完成签到,获得积分20
25秒前
26秒前
超越好帅发布了新的文献求助10
26秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
茶艺师试题库(初级、中级、高级、技师、高级技师) 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertebrate Palaeontology, 5th Edition 570
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5360485
求助须知:如何正确求助?哪些是违规求助? 4491088
关于积分的说明 13981391
捐赠科研通 4393724
什么是DOI,文献DOI怎么找? 2413597
邀请新用户注册赠送积分活动 1406430
关于科研通互助平台的介绍 1380915