A Method for Evaluating the Green Economic Efficiency of Resource-Based Cities Based on Neural Network Improved DEA Model

排名(信息检索) 计算机科学 人工神经网络 数据包络分析 效率 点(几何) 生产力 计量经济学 数学优化 人工智能 统计 数学 经济 几何学 估计员 宏观经济学
作者
Zhifeng Shen,Ning Liu,Xialing Li,Zhengguang Kang
出处
期刊:Computational Intelligence and Neuroscience [Hindawi Publishing Corporation]
卷期号:2022: 1-11 被引量:5
标识
DOI:10.1155/2022/9521107
摘要

In this study, we use BP neural network to improve the DEA model to conduct in-depth research and analysis on the method of green economic efficiency evaluation of resource-based cities. The traditional DEA cannot make ranking and analysis of effective units, which affects the accuracy of empirical analysis. Accordingly, the BP-DEA model is introduced to further conduct a comparative eco-efficiency analysis of relatively effective provinces. In this study, the optimal inputs and outputs are calculated by DEA, and further, the BP neural network is used to fit the functional relationship between the optimal inputs and outputs, and by adding variables, the trained neural network can be used for the prediction of the optimal outputs. In this study, the BP-DEA model is used to empirically investigate the temporal evolution trend, spatial differences, and efficiency differences in eco-efficiency. Meanwhile, breaking through the limitation that DEA can only calculate regional efficiency values, this study combines the Malmquist index to compare and decompose the eco-efficiency of different provinces to analyze the sources of total factor productivity changes. The results show that the method can clarify the gap between the actual operation of each indicator and the reference point; it can identify how much room for improvement still needs to be made for each indicator, and it can also determine whether each city should be rewarded or penalized and its specific amount. Finally, based on the evaluation of eco-efficiency and the main constraints, corresponding policy recommendations are proposed. Finally, based on the evaluation results of the BP-DEA method, this study analyzes the overall efficiency improvement of cities in the two study areas in three dimensions: urbanization construction, ecology, and economic development put forward seven types of urban efficiency improvement and propose targeted urban development suggestions according to regional characteristics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
XiaoM完成签到,获得积分10
刚刚
啊泽ovo应助gf采纳,获得10
1秒前
Desperado发布了新的文献求助10
2秒前
科研通AI5应助Zch采纳,获得10
2秒前
3秒前
3秒前
mmb发布了新的文献求助50
3秒前
Cassie完成签到,获得积分10
4秒前
Ben完成签到,获得积分10
4秒前
5秒前
Hello~发布了新的文献求助10
5秒前
科研通AI6应助呆萌综合征采纳,获得10
5秒前
6秒前
椰奶西瓜完成签到,获得积分10
7秒前
憨憨猫完成签到,获得积分10
7秒前
韦涔完成签到,获得积分0
8秒前
白石溪完成签到,获得积分10
8秒前
炙热晓露发布了新的文献求助10
9秒前
9秒前
Orange应助科研通管家采纳,获得10
9秒前
CipherSage应助科研通管家采纳,获得10
9秒前
完美世界应助科研通管家采纳,获得10
9秒前
情怀应助科研通管家采纳,获得10
9秒前
Jasper应助科研通管家采纳,获得10
9秒前
36456657应助科研通管家采纳,获得10
9秒前
10秒前
orixero应助科研通管家采纳,获得10
10秒前
华仔应助科研通管家采纳,获得10
10秒前
acdc发布了新的文献求助20
10秒前
FashionBoy应助科研通管家采纳,获得10
10秒前
shen应助科研通管家采纳,获得10
10秒前
脑洞疼应助科研通管家采纳,获得10
10秒前
所所应助科研通管家采纳,获得10
10秒前
852应助科研通管家采纳,获得10
10秒前
科研通AI5应助刘树琦采纳,获得40
10秒前
思源应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
SciGPT应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
罗罗完成签到,获得积分10
11秒前
高分求助中
Incubation and Hatchery Performance, The Devil is in the Details 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5204586
求助须知:如何正确求助?哪些是违规求助? 4383650
关于积分的说明 13649996
捐赠科研通 4241496
什么是DOI,文献DOI怎么找? 2326910
邀请新用户注册赠送积分活动 1324573
关于科研通互助平台的介绍 1276875