A Method for Evaluating the Green Economic Efficiency of Resource-Based Cities Based on Neural Network Improved DEA Model

排名(信息检索) 计算机科学 人工神经网络 数据包络分析 效率 点(几何) 生产力 计量经济学 数学优化 人工智能 统计 数学 经济 几何学 宏观经济学 估计员
作者
Zhifeng Shen,Ning Liu,Xialing Li,Zhengguang Kang
出处
期刊:Computational Intelligence and Neuroscience [Hindawi Limited]
卷期号:2022: 1-11 被引量:5
标识
DOI:10.1155/2022/9521107
摘要

In this study, we use BP neural network to improve the DEA model to conduct in-depth research and analysis on the method of green economic efficiency evaluation of resource-based cities. The traditional DEA cannot make ranking and analysis of effective units, which affects the accuracy of empirical analysis. Accordingly, the BP-DEA model is introduced to further conduct a comparative eco-efficiency analysis of relatively effective provinces. In this study, the optimal inputs and outputs are calculated by DEA, and further, the BP neural network is used to fit the functional relationship between the optimal inputs and outputs, and by adding variables, the trained neural network can be used for the prediction of the optimal outputs. In this study, the BP-DEA model is used to empirically investigate the temporal evolution trend, spatial differences, and efficiency differences in eco-efficiency. Meanwhile, breaking through the limitation that DEA can only calculate regional efficiency values, this study combines the Malmquist index to compare and decompose the eco-efficiency of different provinces to analyze the sources of total factor productivity changes. The results show that the method can clarify the gap between the actual operation of each indicator and the reference point; it can identify how much room for improvement still needs to be made for each indicator, and it can also determine whether each city should be rewarded or penalized and its specific amount. Finally, based on the evaluation of eco-efficiency and the main constraints, corresponding policy recommendations are proposed. Finally, based on the evaluation results of the BP-DEA method, this study analyzes the overall efficiency improvement of cities in the two study areas in three dimensions: urbanization construction, ecology, and economic development put forward seven types of urban efficiency improvement and propose targeted urban development suggestions according to regional characteristics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
韩麒嘉发布了新的文献求助10
刚刚
zywzyw发布了新的文献求助10
刚刚
刚刚
FashionBoy应助cc采纳,获得10
刚刚
量子星尘发布了新的文献求助10
1秒前
1秒前
1秒前
JiA完成签到,获得积分10
1秒前
小任完成签到,获得积分10
2秒前
果粒橙发布了新的文献求助10
2秒前
斯文败类应助麻辣老妖婆采纳,获得10
2秒前
花飞飞凡发布了新的文献求助10
2秒前
温暖静柏完成签到,获得积分20
3秒前
3秒前
科研通AI6应助myt采纳,获得10
3秒前
zhanng发布了新的文献求助10
4秒前
奇遇里发布了新的文献求助10
4秒前
李健的小迷弟应助承乐采纳,获得30
5秒前
小马甲应助Jian采纳,获得10
5秒前
卢秋宇完成签到,获得积分20
6秒前
叶子完成签到,获得积分10
6秒前
瞿琼瑶发布了新的文献求助80
7秒前
7秒前
苦苦发布了新的文献求助10
7秒前
7秒前
8秒前
华仔应助多情以山采纳,获得10
8秒前
奔跑西木发布了新的文献求助10
8秒前
8秒前
雨天有伞完成签到,获得积分10
9秒前
ZOLEI完成签到,获得积分10
9秒前
10秒前
超级万声发布了新的文献求助30
10秒前
执着蓝发布了新的文献求助10
10秒前
迷路巧曼完成签到,获得积分20
11秒前
害羞鬼发布了新的文献求助10
12秒前
12秒前
Giannis完成签到,获得积分20
13秒前
超级翠完成签到,获得积分10
13秒前
hzl发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836