A Method for Evaluating the Green Economic Efficiency of Resource-Based Cities Based on Neural Network Improved DEA Model

排名(信息检索) 计算机科学 人工神经网络 数据包络分析 效率 点(几何) 生产力 计量经济学 数学优化 人工智能 统计 数学 经济 几何学 估计员 宏观经济学
作者
Zhifeng Shen,Ning Liu,Xialing Li,Zhengguang Kang
出处
期刊:Computational Intelligence and Neuroscience [Hindawi Limited]
卷期号:2022: 1-11 被引量:5
标识
DOI:10.1155/2022/9521107
摘要

In this study, we use BP neural network to improve the DEA model to conduct in-depth research and analysis on the method of green economic efficiency evaluation of resource-based cities. The traditional DEA cannot make ranking and analysis of effective units, which affects the accuracy of empirical analysis. Accordingly, the BP-DEA model is introduced to further conduct a comparative eco-efficiency analysis of relatively effective provinces. In this study, the optimal inputs and outputs are calculated by DEA, and further, the BP neural network is used to fit the functional relationship between the optimal inputs and outputs, and by adding variables, the trained neural network can be used for the prediction of the optimal outputs. In this study, the BP-DEA model is used to empirically investigate the temporal evolution trend, spatial differences, and efficiency differences in eco-efficiency. Meanwhile, breaking through the limitation that DEA can only calculate regional efficiency values, this study combines the Malmquist index to compare and decompose the eco-efficiency of different provinces to analyze the sources of total factor productivity changes. The results show that the method can clarify the gap between the actual operation of each indicator and the reference point; it can identify how much room for improvement still needs to be made for each indicator, and it can also determine whether each city should be rewarded or penalized and its specific amount. Finally, based on the evaluation of eco-efficiency and the main constraints, corresponding policy recommendations are proposed. Finally, based on the evaluation results of the BP-DEA method, this study analyzes the overall efficiency improvement of cities in the two study areas in three dimensions: urbanization construction, ecology, and economic development put forward seven types of urban efficiency improvement and propose targeted urban development suggestions according to regional characteristics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱吃瓜的搬砖猴完成签到,获得积分10
1秒前
阿佑发布了新的文献求助10
1秒前
star应助清和夜廿三采纳,获得20
1秒前
平淡南霜完成签到,获得积分10
2秒前
2秒前
宗门天才少女完成签到,获得积分10
2秒前
聪明雅绿发布了新的文献求助10
2秒前
欢呼的巧蕊完成签到,获得积分10
2秒前
洁净的醉波完成签到,获得积分10
2秒前
hmf410发布了新的文献求助10
2秒前
3秒前
hr发布了新的文献求助10
3秒前
斯文败类应助薄荷采纳,获得10
3秒前
ax驳回了情怀应助
3秒前
邓年念发布了新的文献求助10
3秒前
无为完成签到,获得积分10
4秒前
梦之发布了新的文献求助10
5秒前
安详的小凝完成签到,获得积分10
5秒前
风格和完成签到,获得积分10
6秒前
难过的大白菜完成签到,获得积分10
6秒前
6秒前
6秒前
holting完成签到,获得积分10
7秒前
xmhxpz发布了新的文献求助10
7秒前
7秒前
脑洞疼应助fishuae采纳,获得10
7秒前
8秒前
8秒前
9秒前
李狗蛋发布了新的文献求助10
9秒前
深情安青应助阿佑采纳,获得10
9秒前
jane完成签到,获得积分10
9秒前
秀丽小猫咪给math-naive的求助进行了留言
9秒前
三十三发布了新的文献求助10
11秒前
所所应助xw采纳,获得10
11秒前
11秒前
12秒前
Ava应助XiaobaoWang采纳,获得10
12秒前
12秒前
城南发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545786
求助须知:如何正确求助?哪些是违规求助? 4631840
关于积分的说明 14622683
捐赠科研通 4573553
什么是DOI,文献DOI怎么找? 2507605
邀请新用户注册赠送积分活动 1484320
关于科研通互助平台的介绍 1455594