A Method for Evaluating the Green Economic Efficiency of Resource-Based Cities Based on Neural Network Improved DEA Model

排名(信息检索) 计算机科学 人工神经网络 数据包络分析 效率 点(几何) 生产力 计量经济学 数学优化 人工智能 统计 数学 经济 几何学 估计员 宏观经济学
作者
Zhifeng Shen,Ning Liu,Xialing Li,Zhengguang Kang
出处
期刊:Computational Intelligence and Neuroscience [Hindawi Limited]
卷期号:2022: 1-11 被引量:5
标识
DOI:10.1155/2022/9521107
摘要

In this study, we use BP neural network to improve the DEA model to conduct in-depth research and analysis on the method of green economic efficiency evaluation of resource-based cities. The traditional DEA cannot make ranking and analysis of effective units, which affects the accuracy of empirical analysis. Accordingly, the BP-DEA model is introduced to further conduct a comparative eco-efficiency analysis of relatively effective provinces. In this study, the optimal inputs and outputs are calculated by DEA, and further, the BP neural network is used to fit the functional relationship between the optimal inputs and outputs, and by adding variables, the trained neural network can be used for the prediction of the optimal outputs. In this study, the BP-DEA model is used to empirically investigate the temporal evolution trend, spatial differences, and efficiency differences in eco-efficiency. Meanwhile, breaking through the limitation that DEA can only calculate regional efficiency values, this study combines the Malmquist index to compare and decompose the eco-efficiency of different provinces to analyze the sources of total factor productivity changes. The results show that the method can clarify the gap between the actual operation of each indicator and the reference point; it can identify how much room for improvement still needs to be made for each indicator, and it can also determine whether each city should be rewarded or penalized and its specific amount. Finally, based on the evaluation of eco-efficiency and the main constraints, corresponding policy recommendations are proposed. Finally, based on the evaluation results of the BP-DEA method, this study analyzes the overall efficiency improvement of cities in the two study areas in three dimensions: urbanization construction, ecology, and economic development put forward seven types of urban efficiency improvement and propose targeted urban development suggestions according to regional characteristics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
balzacsun发布了新的文献求助10
刚刚
JamesPei应助星星采纳,获得10
刚刚
1秒前
1秒前
laodie完成签到,获得积分10
2秒前
彭于晏应助ipeakkka采纳,获得10
2秒前
2秒前
敏感的芷发布了新的文献求助10
2秒前
susan发布了新的文献求助10
2秒前
3秒前
李爱国应助轻松的贞采纳,获得10
3秒前
wz完成签到,获得积分10
4秒前
子川完成签到 ,获得积分10
4秒前
怕孤独的鹭洋完成签到,获得积分10
4秒前
5秒前
耍酷的夏云完成签到,获得积分10
5秒前
laodie发布了新的文献求助10
6秒前
6秒前
小达完成签到,获得积分10
6秒前
nenoaowu发布了新的文献求助10
6秒前
文章要有性价比完成签到,获得积分10
7秒前
俏皮半烟完成签到,获得积分10
7秒前
Aki发布了新的文献求助10
7秒前
111完成签到,获得积分10
9秒前
耗尽完成签到,获得积分10
9秒前
烂漫驳发布了新的文献求助10
11秒前
轻松的贞完成签到,获得积分10
12秒前
李健应助balzacsun采纳,获得10
13秒前
轻松的悟空完成签到 ,获得积分10
15秒前
susan完成签到,获得积分10
16秒前
0029完成签到,获得积分10
18秒前
Aki完成签到,获得积分10
18秒前
18秒前
19秒前
20秒前
21秒前
LXR完成签到,获得积分10
23秒前
thchiang发布了新的文献求助10
24秒前
李健应助北城采纳,获得10
24秒前
WDK发布了新的文献求助10
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824