Supply Chain Fraud Prediction with Machine Learning and Artificial intelligence

供应链 计算机科学 人工智能 机器学习 供应链管理 商业智能 数据挖掘 业务 营销
作者
Mark Lokanan,Vikas Maddhesia
出处
期刊:Research Square - Research Square 被引量:3
标识
DOI:10.21203/rs.3.rs-1996324/v1
摘要

Abstract The increasing complexity of supply chains is putting pressure on businesses to find new ways to optimize efficiency and cut costs. One area that has seen a lot of recent development is machine learning (ML) and artificial intelligence (AI) to help manage supply chains. This paper employs machine learning (ML) and artificial intelligence (AI) algorithms to predict fraud in the supply chain. Supply chain data for this project was retrieved from real-world business transactions. The findings show that ML and AI classifiers did an excellent job predicting supply chain fraud. In particular, the AI model was the highest predictor across all performance measures. These results suggest that computational intelligence can be a powerful tool for detecting and preventing supply chain fraud. ML and AI classifiers can analyze vast amounts of data and identify patterns that may evade manual detection. The findings presented in this paper can be used to optimize supply chain management (SCM) and make predictions of fraudulent transactions before they occur. While ML and AI classifiers are still in the early stages of development, they have the potential to revolutionize SCM. Future research should explore how these techniques can be refined and applied to other domains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
uma完成签到,获得积分10
刚刚
Abdurrahman完成签到,获得积分10
1秒前
务实的羽毛完成签到,获得积分10
1秒前
1秒前
lee1984612完成签到,获得积分10
2秒前
asjm完成签到,获得积分0
2秒前
小马甲应助笑点低的丹烟采纳,获得10
2秒前
鳗鱼凡波完成签到,获得积分10
2秒前
myuniv发布了新的文献求助10
2秒前
Singularity应助全蛋857采纳,获得10
3秒前
3秒前
wang完成签到,获得积分10
3秒前
reed1220完成签到,获得积分20
3秒前
任寒松发布了新的文献求助10
4秒前
7秒前
8秒前
humble完成签到 ,获得积分10
9秒前
9秒前
wanci应助任寒松采纳,获得10
9秒前
哇samm完成签到,获得积分10
9秒前
Jackson发布了新的文献求助10
9秒前
9秒前
9秒前
小星星发布了新的文献求助30
10秒前
10秒前
11秒前
11秒前
罐子完成签到,获得积分10
12秒前
13秒前
13秒前
XXJ发布了新的文献求助10
14秒前
船长发布了新的文献求助10
14秒前
调皮的凝丹完成签到,获得积分10
15秒前
笑点低的丹烟完成签到,获得积分20
15秒前
caixia完成签到 ,获得积分10
15秒前
15秒前
森宝发布了新的文献求助10
15秒前
Duffy发布了新的文献求助10
15秒前
meng17应助樱子采纳,获得10
15秒前
DD应助Vera采纳,获得10
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952180
求助须知:如何正确求助?哪些是违规求助? 3497683
关于积分的说明 11088472
捐赠科研通 3228269
什么是DOI,文献DOI怎么找? 1784720
邀请新用户注册赠送积分活动 868875
科研通“疑难数据库(出版商)”最低求助积分说明 801281