Supply Chain Fraud Prediction with Machine Learning and Artificial intelligence

供应链 计算机科学 人工智能 机器学习 供应链管理 商业智能 数据挖掘 业务 营销
作者
Mark Lokanan,Vikas Maddhesia
出处
期刊:Research Square - Research Square 被引量:3
标识
DOI:10.21203/rs.3.rs-1996324/v1
摘要

Abstract The increasing complexity of supply chains is putting pressure on businesses to find new ways to optimize efficiency and cut costs. One area that has seen a lot of recent development is machine learning (ML) and artificial intelligence (AI) to help manage supply chains. This paper employs machine learning (ML) and artificial intelligence (AI) algorithms to predict fraud in the supply chain. Supply chain data for this project was retrieved from real-world business transactions. The findings show that ML and AI classifiers did an excellent job predicting supply chain fraud. In particular, the AI model was the highest predictor across all performance measures. These results suggest that computational intelligence can be a powerful tool for detecting and preventing supply chain fraud. ML and AI classifiers can analyze vast amounts of data and identify patterns that may evade manual detection. The findings presented in this paper can be used to optimize supply chain management (SCM) and make predictions of fraudulent transactions before they occur. While ML and AI classifiers are still in the early stages of development, they have the potential to revolutionize SCM. Future research should explore how these techniques can be refined and applied to other domains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
han应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
wj发布了新的文献求助10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
上官若男应助科研通管家采纳,获得10
2秒前
2秒前
小二郎应助科研通管家采纳,获得10
2秒前
Ava应助科研通管家采纳,获得10
2秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
2秒前
酷波er应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
田様应助HY采纳,获得10
2秒前
HTJ发布了新的文献求助10
3秒前
Qianbaor应助研友_Z7WGlZ采纳,获得10
3秒前
乐乐应助qwe采纳,获得10
3秒前
3秒前
4秒前
LU完成签到 ,获得积分10
4秒前
充电宝应助xiaoqi采纳,获得10
4秒前
5秒前
7秒前
zhangni完成签到,获得积分10
8秒前
bluelu发布了新的文献求助10
9秒前
Owen应助袁佳琪采纳,获得10
9秒前
鲍文启发布了新的文献求助10
9秒前
9秒前
思源应助失眠芷蝶采纳,获得10
9秒前
Aaernan发布了新的文献求助30
10秒前
乌冬面发布了新的文献求助10
10秒前
10秒前
拾柒发布了新的文献求助10
11秒前
ppap完成签到,获得积分10
11秒前
11秒前
ding应助不知道叫啥采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3542666
求助须知:如何正确求助?哪些是违规求助? 3120072
关于积分的说明 9341436
捐赠科研通 2818131
什么是DOI,文献DOI怎么找? 1549355
邀请新用户注册赠送积分活动 722120
科研通“疑难数据库(出版商)”最低求助积分说明 712944