清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A Deep Ensemble Dynamic Learning Network for Corona Virus Disease 2019 Diagnosis

人工智能 计算机科学 集成学习 深度学习 特征(语言学) 模式识别(心理学) 医学诊断 预处理器 卷积神经网络 机器学习 医学 病理 哲学 语言学
作者
Zhijun Zhang,Bozhao Chen,Yamei Luo
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (3): 3912-3926 被引量:11
标识
DOI:10.1109/tnnls.2022.3201198
摘要

Corona virus disease 2019 is an extremely fatal pandemic around the world. Intelligently recognizing X-ray chest radiography images for automatically identifying corona virus disease 2019 from other types of pneumonia and normal cases provides clinicians with tremendous conveniences in diagnosis process. In this article, a deep ensemble dynamic learning network is proposed. After a chain of image preprocessing steps and the division of image dataset, convolution blocks and the final average pooling layer are pretrained as a feature extractor. For classifying the extracted feature samples, two-stage bagging dynamic learning network is trained based on neural dynamic learning and bagging algorithms, which diagnoses the presence and types of pneumonia successively. Experimental results manifest that using the proposed deep ensemble dynamic learning network obtains 98.7179% diagnosis accuracy, which indicates more excellent diagnosis effect than existing state-of-the-art models on the open image dataset. Such accurate diagnosis effects provide convincing evidences for further detections and treatments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
林克完成签到,获得积分10
6秒前
呆萌冰彤完成签到 ,获得积分10
9秒前
13秒前
银鱼在游发布了新的文献求助10
18秒前
zhuosht完成签到 ,获得积分10
21秒前
鲤鱼山人完成签到 ,获得积分10
28秒前
sevenhill完成签到 ,获得积分0
40秒前
Orange应助www采纳,获得10
40秒前
Arctic完成签到 ,获得积分10
42秒前
zzgpku完成签到,获得积分0
46秒前
wave8013完成签到 ,获得积分10
59秒前
1分钟前
两个轮完成签到 ,获得积分10
1分钟前
笨笨完成签到 ,获得积分10
1分钟前
英俊的铭应助ysss0831采纳,获得10
1分钟前
红火完成签到 ,获得积分10
1分钟前
Adc应助科研通管家采纳,获得10
1分钟前
Adc应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
herpes完成签到 ,获得积分10
2分钟前
chichenglin完成签到 ,获得积分0
2分钟前
gmc完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
Yuki完成签到 ,获得积分10
3分钟前
3分钟前
朱光辉完成签到,获得积分10
3分钟前
22完成签到 ,获得积分10
3分钟前
Moona发布了新的文献求助10
3分钟前
Adc应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
3分钟前
4分钟前
ysss0831完成签到,获得积分10
4分钟前
ysss0831发布了新的文献求助10
4分钟前
4分钟前
www发布了新的文献求助10
4分钟前
嘻嘻完成签到,获得积分10
4分钟前
坚定盈完成签到,获得积分20
4分钟前
坚定盈发布了新的文献求助10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715229
求助须知:如何正确求助?哪些是违规求助? 5232233
关于积分的说明 15274227
捐赠科研通 4866222
什么是DOI,文献DOI怎么找? 2612791
邀请新用户注册赠送积分活动 1562951
关于科研通互助平台的介绍 1520349