多糖
疾病
医学
生物技术
药理学
生物
生物化学
病理
作者
Chao‐Li Jiang,Xue‐Ying Li,Wen‐Di Shen,Li‐Hua Pan,Qiang‐Ming Li,Jian‐Ping Luo,Xue‐Qiang Zha
摘要
Abstract Atherosclerosis is a kind of lipid-driven chronic inflammatory disease of arteries and is the principal pathological basis of life-threatening cardiovascular disease events, such as strokes and heart attacks. Clinically, statins are the most commonly prescribed drugs for the treatment of atherosclerosis, but prolonged use of these drugs exhibit many adverse reactions and have limited efficacy. Polysaccharides are important natural biomacromolecules widely existing in plants, animals, microorganisms and algae. They have drawn considerable attention worldwide due to their multiple healthy functions, along with their non-toxic property. Importantly, a growing number of studies have demonstrated that bioactive polysaccharides exhibit prominent efficiency in controlling atherosclerotic risk factors like hyperlipemia, hypertension, oxidative stress, and inflammation. In recent decades, various bioactive polysaccharides with different structural features and anti-atherosclerotic potential from natural sources have been isolated, purified, and characterized. The aim of this review is to focus on the research progress of natural polysaccharides in reducing the risks of atherosclerosis based on evidence of in vitro and in vivo studies from 1966 to 2022. Practical applications In the future, it is still necessary to strengthen the research on the development and mechanism of polysaccharides with anti-atherosclerotic potential. These anti-atherosclerotic polysaccharides with different structural characteristics and physiochemical properties from different sources will constitute a huge source of materials for future applications, especially in functional foods and drugs. The information summarized here may serve as useful reference materials for further investigation, production, and application of these polysaccharides in functional foods and therapeutic agents.
科研通智能强力驱动
Strongly Powered by AbleSci AI