Target drift discriminative network based on deep learning in visual tracking

判别式 Softmax函数 人工智能 计算机科学 模式识别(心理学) 跟踪(教育) 眼动 最大化 集合(抽象数据类型) 计算机视觉 深度学习 数学 心理学 教育学 数学优化 程序设计语言
作者
Zhiqiang Hou,Zhuo Wang,Lei Pu,Sugang Ma,Zhilong Yang,Jiulun Fan
出处
期刊:Journal of Electronic Imaging [SPIE - International Society for Optical Engineering]
卷期号:31 (04) 被引量:3
标识
DOI:10.1117/1.jei.31.4.043052
摘要

In visual tracking, sometimes the target response value is high, but it is not the tracking result, which can result in the wrong judgment. Moreover, the threshold to decide the tracking result needs to be set artificially in the traditional discriminative methods. We propose a deep learning-based target drift discriminative network to judge whether the target is lost. We design a lightweight network without the threshold, using four convolutional layers, three full connection layers, and the Softmax function to judge the tracking results. When training the network, the established positive and negative samples are used, and we select difficult samples for further training to achieve a better target discriminative effect. Finally, a target drift discriminative network is introduced into the accurate tracking by overlap maximization. When it is judged that the target is lost, another search area is selected to quickly find the target. Numerous experiments show that our method achieves the best performance on datasets UAV123, UAV20L, and VOT2018-LT, especially on the UAV20L dataset, for which the tracking precision and tracking success rate are improved by 3.7% and 2.8%. Compared with several other classical threshold discriminative criteria, we do not need to set the threshold artificially and have better judgment performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小萌新完成签到,获得积分10
刚刚
刚刚
玉玉完成签到,获得积分10
刚刚
2秒前
2秒前
2秒前
wujnghao发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
秦大博发布了新的文献求助10
5秒前
动听的时光完成签到,获得积分10
6秒前
7秒前
阿斯顿撒大学完成签到,获得积分10
7秒前
8秒前
8秒前
伊雪儿发布了新的文献求助10
9秒前
nenoaowu发布了新的文献求助10
9秒前
爸爸发布了新的文献求助10
10秒前
suohaiyun发布了新的文献求助10
10秒前
风吹麦田应助活泼的萝卜采纳,获得30
10秒前
淡淡听寒完成签到 ,获得积分10
11秒前
搜集达人应助LIULIU采纳,获得10
12秒前
Eally完成签到,获得积分10
13秒前
13秒前
shenmolianzzz完成签到,获得积分10
13秒前
BowieHuang应助单薄遥采纳,获得10
14秒前
云馨完成签到,获得积分10
15秒前
Zhenli_Li完成签到,获得积分10
15秒前
科研通AI2S应助tutu采纳,获得10
16秒前
今后应助Csyu采纳,获得30
16秒前
17秒前
Akim应助药大小金鱼采纳,获得10
17秒前
爸爸完成签到,获得积分10
17秒前
suohaiyun完成签到,获得积分10
17秒前
wx完成签到,获得积分10
18秒前
Zhenli_Li发布了新的文献求助10
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545314
求助须知:如何正确求助?哪些是违规求助? 4631326
关于积分的说明 14620263
捐赠科研通 4572993
什么是DOI,文献DOI怎么找? 2507198
邀请新用户注册赠送积分活动 1484092
关于科研通互助平台的介绍 1455332