Target drift discriminative network based on deep learning in visual tracking

判别式 Softmax函数 人工智能 计算机科学 模式识别(心理学) 跟踪(教育) 眼动 最大化 集合(抽象数据类型) 计算机视觉 深度学习 数学 心理学 教育学 数学优化 程序设计语言
作者
Zhiqiang Hou,Zhuo Wang,Lei Pu,Sugang Ma,Zhilong Yang,Jiulun Fan
出处
期刊:Journal of Electronic Imaging [SPIE]
卷期号:31 (04) 被引量:3
标识
DOI:10.1117/1.jei.31.4.043052
摘要

In visual tracking, sometimes the target response value is high, but it is not the tracking result, which can result in the wrong judgment. Moreover, the threshold to decide the tracking result needs to be set artificially in the traditional discriminative methods. We propose a deep learning-based target drift discriminative network to judge whether the target is lost. We design a lightweight network without the threshold, using four convolutional layers, three full connection layers, and the Softmax function to judge the tracking results. When training the network, the established positive and negative samples are used, and we select difficult samples for further training to achieve a better target discriminative effect. Finally, a target drift discriminative network is introduced into the accurate tracking by overlap maximization. When it is judged that the target is lost, another search area is selected to quickly find the target. Numerous experiments show that our method achieves the best performance on datasets UAV123, UAV20L, and VOT2018-LT, especially on the UAV20L dataset, for which the tracking precision and tracking success rate are improved by 3.7% and 2.8%. Compared with several other classical threshold discriminative criteria, we do not need to set the threshold artificially and have better judgment performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
like完成签到 ,获得积分10
1秒前
SciGPT应助mango_采纳,获得10
3秒前
猪猪hero应助孟__采纳,获得10
3秒前
加快步伐发布了新的文献求助10
4秒前
丘比特应助汪汪采纳,获得10
6秒前
8秒前
彭于晏应助SCboxamn采纳,获得10
8秒前
8秒前
10秒前
小猪发布了新的文献求助10
13秒前
SYLH应助pengyuyan采纳,获得10
13秒前
鲸鱼不是鱼完成签到,获得积分10
13秒前
张雷应助MANGMANG采纳,获得10
15秒前
15秒前
Alicia发布了新的文献求助10
16秒前
16秒前
Hello应助文静沛萍采纳,获得10
17秒前
18秒前
奋斗藏花完成签到,获得积分10
18秒前
fan发布了新的文献求助10
19秒前
汪汪发布了新的文献求助10
20秒前
20秒前
20秒前
21秒前
饭ff发布了新的文献求助10
21秒前
21秒前
ann发布了新的文献求助10
21秒前
核桃应助五月采纳,获得10
25秒前
SCboxamn发布了新的文献求助10
25秒前
26秒前
pengyuyan完成签到,获得积分10
26秒前
打打应助向北游采纳,获得10
27秒前
量子星尘发布了新的文献求助10
27秒前
开心尔芙发布了新的文献求助10
27秒前
安思豪发布了新的文献求助10
28秒前
29秒前
sian完成签到,获得积分10
29秒前
30秒前
30秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952586
求助须知:如何正确求助?哪些是违规求助? 3498015
关于积分的说明 11089846
捐赠科研通 3228577
什么是DOI,文献DOI怎么找? 1784998
邀请新用户注册赠送积分活动 869061
科研通“疑难数据库(出版商)”最低求助积分说明 801341