内体
吸入
细胞内
信使核糖核酸
化学
囊性纤维化跨膜传导调节器
细胞生物学
粘液
基因传递
转染
肺
生物物理学
医学
生物
基因
生物化学
解剖
内科学
生态学
作者
Jeonghwan Kim,Antony Jozić,Yuxin Lin,Yulia Eygeris,Elissa Bloom,Xiaochen Tan,Christopher Acosta,Kelvin D. MacDonald,Kevin Welsher,Gaurav Sahay
出处
期刊:ACS Nano
[American Chemical Society]
日期:2022-08-29
卷期号:16 (9): 14792-14806
被引量:99
标识
DOI:10.1021/acsnano.2c05647
摘要
Despite lipid nanoparticles' (LNPs) success in the effective and safe delivery of mRNA vaccines, an inhalation-based mRNA therapy for lung diseases remains challenging. LNPs tend to disintegrate due to shear stress during aerosolization, leading to ineffective delivery. Therefore, LNPs need to remain stable through the process of nebulization and mucus penetration, yet labile enough for endosomal escape. To meet these opposing needs, we utilized PEG lipid to enhance the surficial stability of LNPs with the inclusion of a cholesterol analog, β-sitosterol, to improve endosomal escape. Increased PEG concentrations in LNPs enhanced the shear resistance and mucus penetration, while β-sitosterol provided LNPs with a polyhedral shape, facilitating endosomal escape. The optimized LNPs exhibited a uniform particle distribution, a polyhedral morphology, and a rapid mucosal diffusion with enhanced gene transfection. Inhaled LNPs led to localized protein production in the mouse lung without pulmonary or systemic toxicity. Repeated administration of these LNPs led to sustained protein production in the lungs. Lastly, mRNA encoding the cystic fibrosis transmembrane conductance regulator (CFTR) was delivered after nebulization to a CFTR-deficient animal model, resulting in the pulmonary expression of this therapeutic protein. This study demonstrated the rational design approach for clinical translation of inhalable LNP-based mRNA therapies.
科研通智能强力驱动
Strongly Powered by AbleSci AI