Spectral–Spatial–Temporal Transformers for Hyperspectral Image Change Detection

高光谱成像 人工智能 计算机科学 编码器 模式识别(心理学) 像素 计算机视觉 特征提取 空间分析 遥感 地质学 操作系统
作者
Yanheng Wang,Danfeng Hong,Jianjun Sha,Lianru Gao,Lian Liu,Yonggang Zhang,Xianhui Rong
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-14 被引量:47
标识
DOI:10.1109/tgrs.2022.3203075
摘要

Convolutional neural networks (CNNs) with excellent spatial feature extraction abilities have become popular in remote sensing (RS) image change detection (CD). However, CNNs often focus on the extraction of spatial information but ignore important spectral and temporal sequences for hyperspectral images (HSIs). In this paper, we propose a joint spectral, spatial, and temporal transformer for hyperspectral image change detection (HSI-CD), named SST-Former. First, the SST-Former position-encodes each pixel on the cube to remember the spectral and spatial sequences. Second, a spectral transformer encoder structure is used to extract spectral sequence information. Then, a class token for storing the class information of a single temporal HSI concatenates the output of the spectral transformer encoder. The spatial transformer encoder is used to extract spatial texture information in the next step. Finally, the features of different temporal HSIs are sent as the input of temporal transformer, which is used to extract useful CD features between the current HSI pairs and obtain the binary CD result through multilayer perception (MLP). We evaluate SST-Former on three HSI-CD datasets by numerous experiments, showing that it performs better than other excellent methods both visually and qualitatively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
SPark发布了新的文献求助10
1秒前
2秒前
HY关闭了HY文献求助
2秒前
小乖发布了新的文献求助30
2秒前
2秒前
微笑驳完成签到 ,获得积分10
3秒前
3秒前
坚定的跳跳糖完成签到 ,获得积分10
3秒前
4秒前
尊敬冬萱发布了新的文献求助10
4秒前
mofei完成签到,获得积分10
5秒前
5秒前
可爱的函函应助超级绫采纳,获得10
6秒前
6秒前
cbz发布了新的文献求助10
6秒前
6秒前
香蕉觅云应助w_w采纳,获得10
6秒前
6秒前
8秒前
泪流不止发布了新的文献求助10
8秒前
我是站长才怪应助111采纳,获得10
8秒前
mofei发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
9秒前
传奇3应助旺帮主采纳,获得10
9秒前
搬砖工人完成签到,获得积分10
10秒前
小艾应助李成哲采纳,获得10
11秒前
1111chen发布了新的文献求助10
11秒前
双子苦糖发布了新的文献求助10
11秒前
大气摩托完成签到,获得积分10
11秒前
情怀应助舒适路人采纳,获得10
12秒前
ryen发布了新的文献求助30
12秒前
12秒前
良辰应助安娜采纳,获得10
12秒前
13秒前
14秒前
大气摩托发布了新的文献求助10
14秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308920
求助须知:如何正确求助?哪些是违规求助? 2942356
关于积分的说明 8508205
捐赠科研通 2617301
什么是DOI,文献DOI怎么找? 1430043
科研通“疑难数据库(出版商)”最低求助积分说明 664001
邀请新用户注册赠送积分活动 649215