The aim of this paper was to assess whether the BMDC after freezing and thawing are capable to retain the immunophenotype and antigen-presenting capacity. BMDC were generated from bone marrow precursor cells as described previously by culturing the cells in medium containing GM-CSF and IL-4. Afterwards, the cells were harvested, counted and used for phenotyping and priming of syngeneic spleen cells. For cryopreservation, the BMDC were frozen in the presence of 10% of dimethylsulphoxide (DMSO) and 90% foetal calf serum. Forty to fifty percent of both samples, frozen/thawed as well as fresh BMDC, exhibited characteristic DC morphology, and the DC obtained from the frozen/thawed samples expressed a similar level of MHC class I-, MHC class II-, CD80-, CD86-, CD11c-, CD11b-, CD54- and CD205-molecule as fresh DC. To examine the in vitro priming effect of cryopreserved BMDC on syngeneic non-adherent murine C57BL/6 (B6) spleen cells, the BMDC were thawed, pulsed with the lysate prepared from HPV 16-associated tumour MK16 and used for 3H-thymidine assay. The findings of the experiments indicate that fresh as well as cryopreserved murine BMDC preparations pulsed with tumour lysate were efficient to prime the mitogenic activity of syngeneic non-adherent splenocytes. Taken together, the results suggest that frozen/thawed BMDC are morphologically, phenotypically and functionally comparable with fresh BMDC and can be used for construction of dendritic cell-based tumour vaccines.