Serum peptide profiling: identifying novel cancer biomarkers for early disease detection.

癌症 生物标志物 计算生物学 医学 生物信息学 生物 内科学 生物化学
作者
Andrew J. Martorella,Richard J. Robbins
出处
期刊:PubMed 卷期号:78 Suppl 1: 123-8 被引量:2
链接
标识
摘要

Recent advances in mass spectrometry have enabled the identification of hundreds of low molecular weight (LMW) peptides that have previously been difficult to detect in human serum. Serum peptide patterns can now be analyzed using commercially available statistical programs to identify potential peptide patterns that may correlate with the presence or absence of specific diseases. A serum peptide profile (SPP), which is unique to each patient, can be created and compared to a known SPP from a specific disease. The SPP thus serves as a potential early stage biomarker prior to the clinical manifestation of disease. A unique and automated technology platform has been developed by members of the Protein Center at Memorial Sloan-Kettering Cancer Center (MSKCC). It involves a magnetic bead-based approach to extract LMW peptides from serum, placing them by robotic automation on a stainless steel MALDI-TOF target plate, subjecting them to mass spectrometric analysis, and using GeneSpring software to analyze the peptide patterns. Human serum from a cohort of 27 patients with metastatic thyroid cancer and 32 controls were analyzed on the MSKCC platform. 549 individual LMW peptides were identified. A SPP composed of 98 discriminatory LMW peptides was able to distinguish between the two groups of serum samples with high statistical accuracy. We believe that our automated system will serve as a model for future biotechnology laboratories in the quest for hidden diagnostic clues that may be detected by simply analyzing a drop of blood.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助风飞采纳,获得10
1秒前
xzn1123发布了新的文献求助100
1秒前
1秒前
xujingyi发布了新的文献求助10
1秒前
1秒前
顾我发布了新的文献求助20
1秒前
2秒前
裴承昊发布了新的文献求助10
2秒前
淡淡的白卉完成签到,获得积分20
2秒前
3秒前
安详立果完成签到,获得积分10
3秒前
superhero完成签到,获得积分10
3秒前
莫默完成签到,获得积分10
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
情怀应助重要无招采纳,获得10
4秒前
4秒前
4秒前
完美世界应助zx_p采纳,获得10
4秒前
4秒前
啦啦啦发布了新的文献求助10
5秒前
kirisaki发布了新的文献求助10
6秒前
黑翎完成签到 ,获得积分10
7秒前
7秒前
钻石好友完成签到,获得积分20
7秒前
隐形冬云发布了新的文献求助10
7秒前
7秒前
tianfx3发布了新的文献求助10
7秒前
磊磊磊发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
食杂砸发布了新的文献求助10
9秒前
完美世界应助研友_ZA7B7L采纳,获得10
9秒前
9秒前
斯文败类应助疯狂大脑壳采纳,获得10
10秒前
李爱国应助花花采纳,获得10
10秒前
Lucas应助wuhao采纳,获得10
11秒前
任驰骋发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5647315
求助须知:如何正确求助?哪些是违规求助? 4773295
关于积分的说明 15038828
捐赠科研通 4806039
什么是DOI,文献DOI怎么找? 2570062
邀请新用户注册赠送积分活动 1526968
关于科研通互助平台的介绍 1486049