Using latent variables in logistic regression to reduce multicollinearity, A case-control example: breast cancer risk factors

多重共线性 逻辑回归 医学 乳腺癌 潜变量 统计 回归分析 肿瘤科 内科学 癌症 数学
作者
Mohamad Amin Pourhoseingholi,Yadollah Mehrabi,Hamid Alavi Majd,Parvin Yavari
标识
DOI:10.2427/5857
摘要

Background: Logistic regression is one of the most widely used models to analyze the relation between one or more explanatory variables and a categorical response in the field of epidemiology, health and medicine. When there is strong correlation among explanatory variables, i.e.multicollinearity, the efficiency of model reduces considerably. The objective of this research was to employ latent variables to reduce the effect of multicollinearity in analysis of a case-control study about breast cancer risk factors. Methods: The data belonged to a case-control study in which 300 women with breast cancer were compared to same number of controls. To assess the effect of multicollinearity, five highly correlated quantitative variables were selected. Ordinary logistic regression with collinear data was compared to two models contain latent variables were generated using either factor analysis or principal components analysis. Estimated standard errors of parameters were selected to compare the efficiency of models. We also conducted a simulation study in order to compare the efficiency of models with and without latent factors. All analyses were carried out using S-plus. Results: Logistic regression based on five primary variables showed an unusual odds ratios for age at first pregnancy (OR=67960, 95%CI: 10184-453503) and for total length of breast feeding (OR=0). On the other hand the parameters estimated for logistic regression on latent variables generated by both factor analysis and principal components analysis were statistically significant (P<0.003). Their standard errors were smaller than that of ordinary logistic regression on original variables. The simulation showed that in the case of normal error and 58% reliability the logistic regression based on latent variables is more efficient than that model for collinear variables. Conclusions: This research indicated that logistic regression based on latent variables is more efficient than logistic regression based on original collinear variables.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助科研通管家采纳,获得10
1秒前
天天快乐应助科研通管家采纳,获得10
1秒前
小青椒应助科研通管家采纳,获得100
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
凤凰应助科研通管家采纳,获得30
1秒前
wanci应助松松松采纳,获得50
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
思源应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
1秒前
WB87应助科研通管家采纳,获得10
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
WB87应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
NiL应助科研通管家采纳,获得10
2秒前
2秒前
英俊的铭应助xxm采纳,获得10
2秒前
CodeCraft应助科研通管家采纳,获得10
2秒前
Hilda007应助科研通管家采纳,获得10
2秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
cheese完成签到 ,获得积分10
2秒前
3秒前
3秒前
受伤问凝完成签到 ,获得积分10
6秒前
梨花酒完成签到,获得积分10
8秒前
郭嘉彬发布了新的文献求助10
8秒前
9秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
11秒前
uraylong发布了新的文献求助10
11秒前
12秒前
斯文败类应助DamienC采纳,获得10
13秒前
14秒前
松松松发布了新的文献求助50
15秒前
peaunt发布了新的文献求助10
15秒前
冷酷听枫关注了科研通微信公众号
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425244
求助须知:如何正确求助?哪些是违规求助? 4539333
关于积分的说明 14166974
捐赠科研通 4456649
什么是DOI,文献DOI怎么找? 2444274
邀请新用户注册赠送积分活动 1435255
关于科研通互助平台的介绍 1412637