Using latent variables in logistic regression to reduce multicollinearity, A case-control example: breast cancer risk factors

多重共线性 逻辑回归 医学 乳腺癌 潜变量 统计 回归分析 肿瘤科 内科学 癌症 数学
作者
Mohamad Amin Pourhoseingholi,Yadollah Mehrabi,Hamid Alavi Majd,Parvin Yavari
标识
DOI:10.2427/5857
摘要

Background: Logistic regression is one of the most widely used models to analyze the relation between one or more explanatory variables and a categorical response in the field of epidemiology, health and medicine. When there is strong correlation among explanatory variables, i.e.multicollinearity, the efficiency of model reduces considerably. The objective of this research was to employ latent variables to reduce the effect of multicollinearity in analysis of a case-control study about breast cancer risk factors. Methods: The data belonged to a case-control study in which 300 women with breast cancer were compared to same number of controls. To assess the effect of multicollinearity, five highly correlated quantitative variables were selected. Ordinary logistic regression with collinear data was compared to two models contain latent variables were generated using either factor analysis or principal components analysis. Estimated standard errors of parameters were selected to compare the efficiency of models. We also conducted a simulation study in order to compare the efficiency of models with and without latent factors. All analyses were carried out using S-plus. Results: Logistic regression based on five primary variables showed an unusual odds ratios for age at first pregnancy (OR=67960, 95%CI: 10184-453503) and for total length of breast feeding (OR=0). On the other hand the parameters estimated for logistic regression on latent variables generated by both factor analysis and principal components analysis were statistically significant (P<0.003). Their standard errors were smaller than that of ordinary logistic regression on original variables. The simulation showed that in the case of normal error and 58% reliability the logistic regression based on latent variables is more efficient than that model for collinear variables. Conclusions: This research indicated that logistic regression based on latent variables is more efficient than logistic regression based on original collinear variables.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
红豆小猫应助积极睫毛采纳,获得10
刚刚
完美麦片完成签到,获得积分10
刚刚
英姑应助tangz采纳,获得10
1秒前
黄瓜橙橙发布了新的文献求助10
1秒前
举不了一点栗子完成签到,获得积分10
1秒前
Andrew完成签到,获得积分10
4秒前
4秒前
景清完成签到,获得积分10
4秒前
4秒前
5秒前
6秒前
WLWLW发布了新的文献求助30
6秒前
6秒前
JamesPei应助now采纳,获得10
7秒前
7秒前
维时完成签到,获得积分10
7秒前
K2L完成签到,获得积分10
9秒前
wdy337发布了新的文献求助10
10秒前
火炉猫猫完成签到,获得积分10
10秒前
果果发布了新的文献求助30
10秒前
11发布了新的文献求助10
10秒前
清河完成签到,获得积分10
11秒前
学术垃圾制造者完成签到,获得积分10
11秒前
南风上北山完成签到,获得积分10
11秒前
12秒前
12秒前
专注的轻完成签到,获得积分10
12秒前
zzy完成签到 ,获得积分10
12秒前
sxs完成签到 ,获得积分10
12秒前
又夏完成签到,获得积分10
13秒前
zhang完成签到,获得积分10
13秒前
13秒前
14秒前
14秒前
lizhaoyu应助xiaoliu采纳,获得30
14秒前
wf完成签到,获得积分10
14秒前
红黄蓝完成签到 ,获得积分10
14秒前
张牧之完成签到 ,获得积分10
15秒前
15秒前
失眠的汽车完成签到,获得积分10
15秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015939
求助须知:如何正确求助?哪些是违规求助? 3555887
关于积分的说明 11319237
捐赠科研通 3288997
什么是DOI,文献DOI怎么找? 1812357
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812044