Using latent variables in logistic regression to reduce multicollinearity, A case-control example: breast cancer risk factors

多重共线性 逻辑回归 医学 乳腺癌 潜变量 统计 回归分析 肿瘤科 内科学 癌症 数学
作者
Mohamad Amin Pourhoseingholi,Yadollah Mehrabi,Hamid Alavi Majd,Parvin Yavari
标识
DOI:10.2427/5857
摘要

Background: Logistic regression is one of the most widely used models to analyze the relation between one or more explanatory variables and a categorical response in the field of epidemiology, health and medicine. When there is strong correlation among explanatory variables, i.e.multicollinearity, the efficiency of model reduces considerably. The objective of this research was to employ latent variables to reduce the effect of multicollinearity in analysis of a case-control study about breast cancer risk factors. Methods: The data belonged to a case-control study in which 300 women with breast cancer were compared to same number of controls. To assess the effect of multicollinearity, five highly correlated quantitative variables were selected. Ordinary logistic regression with collinear data was compared to two models contain latent variables were generated using either factor analysis or principal components analysis. Estimated standard errors of parameters were selected to compare the efficiency of models. We also conducted a simulation study in order to compare the efficiency of models with and without latent factors. All analyses were carried out using S-plus. Results: Logistic regression based on five primary variables showed an unusual odds ratios for age at first pregnancy (OR=67960, 95%CI: 10184-453503) and for total length of breast feeding (OR=0). On the other hand the parameters estimated for logistic regression on latent variables generated by both factor analysis and principal components analysis were statistically significant (P<0.003). Their standard errors were smaller than that of ordinary logistic regression on original variables. The simulation showed that in the case of normal error and 58% reliability the logistic regression based on latent variables is more efficient than that model for collinear variables. Conclusions: This research indicated that logistic regression based on latent variables is more efficient than logistic regression based on original collinear variables.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
粱自中完成签到,获得积分10
刚刚
superscholar发布了新的文献求助10
1秒前
1秒前
schuang发布了新的文献求助10
2秒前
慕青应助yx阿聪采纳,获得30
2秒前
3秒前
迟暮0820发布了新的文献求助10
3秒前
4秒前
4秒前
wanci应助勤劳襄采纳,获得10
4秒前
小蘑菇应助上冬采纳,获得10
4秒前
领导范儿应助meng采纳,获得10
6秒前
6秒前
Ni完成签到,获得积分10
7秒前
7秒前
彦卿完成签到 ,获得积分20
8秒前
黄昏发布了新的文献求助10
8秒前
小黄doge应助张爱学采纳,获得10
8秒前
8秒前
略略略完成签到,获得积分10
8秒前
共享精神应助迟暮0820采纳,获得10
8秒前
漫步云端发布了新的文献求助10
9秒前
9秒前
川农辅导员完成签到,获得积分10
10秒前
10秒前
情怀应助超爱汉堡和小狗采纳,获得10
10秒前
thy应助研友_Zl1ND8采纳,获得20
10秒前
11秒前
韶卿发布了新的文献求助10
12秒前
共享精神应助zhenxing采纳,获得10
12秒前
OY发布了新的文献求助10
13秒前
Ava应助kang采纳,获得10
13秒前
SANDY完成签到,获得积分10
13秒前
14秒前
要开心完成签到,获得积分10
14秒前
大气靳发布了新的文献求助10
14秒前
Owen应助无或采纳,获得10
15秒前
15秒前
15秒前
高分求助中
All the Birds of the World 3000
IZELTABART TAPATANSINE 500
GNSS Applications in Earth and Space Observations 300
Handbook of Laboratory Animal Science 300
Not Equal : Towards an International Law of Finance 260
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
Dynamics in Chinese Digital Commons: Law, Technology, and Governance 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3719312
求助须知:如何正确求助?哪些是违规求助? 3265805
关于积分的说明 9940986
捐赠科研通 2979566
什么是DOI,文献DOI怎么找? 1634123
邀请新用户注册赠送积分活动 775617
科研通“疑难数据库(出版商)”最低求助积分说明 745739