Using latent variables in logistic regression to reduce multicollinearity, A case-control example: breast cancer risk factors

多重共线性 逻辑回归 医学 乳腺癌 潜变量 统计 回归分析 肿瘤科 内科学 癌症 数学
作者
Mohamad Amin Pourhoseingholi,Yadollah Mehrabi,Hamid Alavi Majd,Parvin Yavari
标识
DOI:10.2427/5857
摘要

Background: Logistic regression is one of the most widely used models to analyze the relation between one or more explanatory variables and a categorical response in the field of epidemiology, health and medicine. When there is strong correlation among explanatory variables, i.e.multicollinearity, the efficiency of model reduces considerably. The objective of this research was to employ latent variables to reduce the effect of multicollinearity in analysis of a case-control study about breast cancer risk factors. Methods: The data belonged to a case-control study in which 300 women with breast cancer were compared to same number of controls. To assess the effect of multicollinearity, five highly correlated quantitative variables were selected. Ordinary logistic regression with collinear data was compared to two models contain latent variables were generated using either factor analysis or principal components analysis. Estimated standard errors of parameters were selected to compare the efficiency of models. We also conducted a simulation study in order to compare the efficiency of models with and without latent factors. All analyses were carried out using S-plus. Results: Logistic regression based on five primary variables showed an unusual odds ratios for age at first pregnancy (OR=67960, 95%CI: 10184-453503) and for total length of breast feeding (OR=0). On the other hand the parameters estimated for logistic regression on latent variables generated by both factor analysis and principal components analysis were statistically significant (P<0.003). Their standard errors were smaller than that of ordinary logistic regression on original variables. The simulation showed that in the case of normal error and 58% reliability the logistic regression based on latent variables is more efficient than that model for collinear variables. Conclusions: This research indicated that logistic regression based on latent variables is more efficient than logistic regression based on original collinear variables.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡定可乐发布了新的文献求助10
刚刚
等待雅寒完成签到,获得积分10
1秒前
Calactic完成签到 ,获得积分10
1秒前
今后应助唠叨的又菡采纳,获得10
1秒前
orixero应助Yvonne采纳,获得10
2秒前
ya完成签到,获得积分10
2秒前
2秒前
梅竹发布了新的文献求助10
2秒前
000发布了新的文献求助10
3秒前
李爱国应助西蓝花战士采纳,获得10
3秒前
527完成签到,获得积分10
3秒前
liang发布了新的文献求助30
3秒前
海光发布了新的文献求助30
4秒前
暖若安阳完成签到,获得积分10
4秒前
求助人完成签到 ,获得积分10
4秒前
4秒前
forg发布了新的文献求助10
4秒前
西瓜发布了新的文献求助10
4秒前
veinard完成签到,获得积分20
4秒前
迷路访旋完成签到,获得积分20
5秒前
亚丽发布了新的文献求助10
5秒前
漂亮大树完成签到 ,获得积分10
5秒前
5秒前
泡泡糖完成签到 ,获得积分10
6秒前
6秒前
吸墨发布了新的文献求助10
6秒前
7秒前
mhq发布了新的文献求助10
7秒前
7秒前
科研通AI6应助chinchilla采纳,获得10
7秒前
元气满满nn完成签到,获得积分10
7秒前
8秒前
9秒前
染墨完成签到,获得积分10
9秒前
KevinHill0924发布了新的文献求助10
9秒前
搜集达人应助Freedom采纳,获得10
9秒前
10秒前
贪玩岱周发布了新的文献求助10
11秒前
11秒前
领导范儿应助闪闪航空采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4960767
求助须知:如何正确求助?哪些是违规求助? 4221237
关于积分的说明 13146027
捐赠科研通 4004962
什么是DOI,文献DOI怎么找? 2191794
邀请新用户注册赠送积分活动 1205889
关于科研通互助平台的介绍 1116970