亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Using latent variables in logistic regression to reduce multicollinearity, A case-control example: breast cancer risk factors

多重共线性 逻辑回归 医学 乳腺癌 潜变量 统计 回归分析 肿瘤科 内科学 癌症 数学
作者
Mohamad Amin Pourhoseingholi,Yadollah Mehrabi,Hamid Alavi Majd,Parvin Yavari
标识
DOI:10.2427/5857
摘要

Background: Logistic regression is one of the most widely used models to analyze the relation between one or more explanatory variables and a categorical response in the field of epidemiology, health and medicine. When there is strong correlation among explanatory variables, i.e.multicollinearity, the efficiency of model reduces considerably. The objective of this research was to employ latent variables to reduce the effect of multicollinearity in analysis of a case-control study about breast cancer risk factors. Methods: The data belonged to a case-control study in which 300 women with breast cancer were compared to same number of controls. To assess the effect of multicollinearity, five highly correlated quantitative variables were selected. Ordinary logistic regression with collinear data was compared to two models contain latent variables were generated using either factor analysis or principal components analysis. Estimated standard errors of parameters were selected to compare the efficiency of models. We also conducted a simulation study in order to compare the efficiency of models with and without latent factors. All analyses were carried out using S-plus. Results: Logistic regression based on five primary variables showed an unusual odds ratios for age at first pregnancy (OR=67960, 95%CI: 10184-453503) and for total length of breast feeding (OR=0). On the other hand the parameters estimated for logistic regression on latent variables generated by both factor analysis and principal components analysis were statistically significant (P<0.003). Their standard errors were smaller than that of ordinary logistic regression on original variables. The simulation showed that in the case of normal error and 58% reliability the logistic regression based on latent variables is more efficient than that model for collinear variables. Conclusions: This research indicated that logistic regression based on latent variables is more efficient than logistic regression based on original collinear variables.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
申腾达发布了新的文献求助10
8秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
Jasper应助科研通管家采纳,获得10
12秒前
华仔应助科研通管家采纳,获得10
12秒前
情怀应助Mercy采纳,获得10
12秒前
lzmcsp完成签到,获得积分10
18秒前
56秒前
1分钟前
啵子发布了新的文献求助10
1分钟前
KsL2177完成签到 ,获得积分10
1分钟前
bkagyin应助啵子采纳,获得10
1分钟前
科研通AI6.1应助charitial采纳,获得10
2分钟前
飞天大南瓜完成签到,获得积分10
2分钟前
merilynht完成签到,获得积分10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
我是老大应助申腾达采纳,获得10
2分钟前
CipherSage应助1234采纳,获得10
2分钟前
2分钟前
Yxy2021完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
charitial发布了新的文献求助10
2分钟前
2分钟前
菜鸟学习完成签到 ,获得积分10
2分钟前
上官若男应助颜安采纳,获得10
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
颜安发布了新的文献求助10
3分钟前
RylNG发布了新的文献求助10
3分钟前
Eusha完成签到,获得积分10
3分钟前
RylNG完成签到,获得积分10
3分钟前
charitial完成签到,获得积分10
3分钟前
3分钟前
3分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5780317
求助须知:如何正确求助?哪些是违规求助? 5654644
关于积分的说明 15453043
捐赠科研通 4911039
什么是DOI,文献DOI怎么找? 2643222
邀请新用户注册赠送积分活动 1590873
关于科研通互助平台的介绍 1545379