Improving Early Drug Discovery through ADME Modelling

广告 药物开发 药物发现 药品 风险分析(工程) 医学 计算机科学 药理学 计算生物学 化学 生化工程 重症监护医学 系统药理学 药物治疗 生物信息学 工程类 生物
作者
David S. Wishart
出处
期刊:Drugs in R & D [Adis, Springer Healthcare]
卷期号:8 (6): 349-362 被引量:92
标识
DOI:10.2165/00126839-200708060-00003
摘要

Drug development is an intrinsically risky business. Like a high stakes poker game the entry costs are high and the probability of winning is low. Indeed, only a tiny percentage of lead compounds ever reach US FDA approval. At any point during the drug development process a prospective drug lead may be terminated owing to lack of efficacy, adverse effects, excessive toxicity, poor absorption or poor clearance. Unfortunately, the more promising a drug lead appears to be, the more costly it is to terminate its development. Typically, the cost of killing a drug grows exponentially as a drug lead moves further down the development pipeline. As a result there is considerable interest in developing either experimental or computational methods that can identify potentially problematic drug leads at the earliest stages in their development. One promising route is through the prediction or modelling of ADME (absorption, distribution, metabolism and excretion). ADME data, whether experimentally measured or computationally predicted, provide key insights into how a drug will ultimately be treated or accepted by the body. So while a drug lead may exhibit phenomenal efficacy in vitro, poor ADME results will almost invariably terminate its development. This review focuses on the use of ADME modelling to reduce late-stage attrition in drug discovery programmes. It also highlights what tools exist today for visualising and predicting ADME data, what tools need to be developed, and the importance of integrating ADME data to aid in compound selection during the earliest phases of drug discovery. In particular, it highlights what tools exist today for visualising and predicting ADME data including: (1) ADME parameter predictors; (2) metabolic fate predictors; (3) metabolic stability predictors; (4) cytochrome P450 substrate predictors; and (5) physiology-based pharmacokinetic (PBPK) modelling software. It also discusses what kinds of tools need to be developed, and the importance of integrating ADME data to aid in compound selection during the earliest phases of drug discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
www发布了新的文献求助30
刚刚
研友_VZG7GZ应助LKL林采纳,获得10
1秒前
1秒前
2秒前
回水完成签到,获得积分10
2秒前
余三心发布了新的文献求助10
2秒前
田様应助haku采纳,获得10
3秒前
4秒前
4秒前
空白完成签到,获得积分20
6秒前
orixero应助费乐巧采纳,获得10
8秒前
8秒前
空白发布了新的文献求助10
9秒前
cc完成签到 ,获得积分10
10秒前
LeezZZZ发布了新的文献求助10
11秒前
Cactus应助研友_Ze2vV8采纳,获得20
11秒前
情怀应助TALE采纳,获得10
12秒前
清秀大方嘤嘤猴完成签到,获得积分10
13秒前
王小新发布了新的文献求助10
13秒前
13秒前
迷路的鞅完成签到,获得积分10
14秒前
痴情的博超应助松鼠采纳,获得30
15秒前
15秒前
大模型应助老阳采纳,获得10
16秒前
迷路的鞅发布了新的文献求助10
17秒前
李乐完成签到 ,获得积分20
18秒前
19秒前
qweerrtt完成签到,获得积分10
19秒前
脸就是黑啊完成签到,获得积分10
20秒前
铭名洺完成签到,获得积分10
20秒前
21秒前
Cactus应助研友_Ze2vV8采纳,获得20
21秒前
21秒前
jilly完成签到,获得积分20
22秒前
22秒前
22秒前
李健应助稳重的悟空采纳,获得10
23秒前
JoanJin发布了新的文献求助10
24秒前
thl发布了新的文献求助10
24秒前
希望天下0贩的0应助Anthone采纳,获得10
25秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3756864
求助须知:如何正确求助?哪些是违规求助? 3300242
关于积分的说明 10113026
捐赠科研通 3014778
什么是DOI,文献DOI怎么找? 1655705
邀请新用户注册赠送积分活动 790073
科研通“疑难数据库(出版商)”最低求助积分说明 753552