同宿轨道
博格达诺夫-塔肯分岔
鞍结分岔
分岔图
数学
同宿分支
分叉
干草叉分叉
异宿分岔
跨临界分岔
马鞍
背景(考古学)
分叉理论的生物学应用
余维数
数学分析
物理
非线性系统
数学优化
生物
古生物学
量子力学
作者
Adelina Georgescu,Carmen Rocşoreanu,N. Giurgiţeanu
出处
期刊:Birkhäuser Basel eBooks
[Birkhäuser Basel]
日期:2003-01-01
卷期号:: 197-202
被引量:2
标识
DOI:10.1007/978-3-0348-7982-8_18
摘要
The FitzHugh-Nagumo (F-N) system 1 modelling the electrical potential in the nodal system of the heart is shown to have a rich dynamics. The results are synthesized in the global bifurcation diagram providing an overall view of all possible qualitatively distinct responses of the model for all values of the parameters. Since the curves of global bifurcation values emerge at points of curves consisting of local bifurcation values, the global bifurcations are presented in the context of the global bifurcation diagram. Thus, codimension one bifurcations of Hopf, homoclinic, saddle-node, breaking saddle connections, nonhyperbolic limit cycle and breaking the connection between a saddle and a saddle-node types are obtained. A large number of codimension two bifurcations are discussed here, such as Bogdanov-Takens, Bautin, double homoclinic, double breaking saddle connections bifurcations. Some of the bifurcation boundaries are obtained analytically, other are obtained numerically, using the software MATHEMATICA and our own code DIECBI 2
科研通智能强力驱动
Strongly Powered by AbleSci AI