正确性
布尔函数
多线性映射
和逆变器图
期限(时间)
传递函数
数学
布尔网络
布尔电路
产品术语
离散数学
理论(学习稳定性)
奇偶校验函数
二元布尔代数
布尔表达式
计算机科学
算法
域代数上的
纯数学
物理
量子力学
机器学习
电气工程
过滤代数
工程类
作者
C. Seshadhri,Andrew M. Smith,Yevgeniy Vorobeychik,Jackson R. Mayo,Robert C. Armstrong
出处
期刊:Physical review
日期:2016-07-05
卷期号:94 (1)
被引量:5
标识
DOI:10.1103/physreve.94.012301
摘要
We present a characterization of short-term stability of Kauffman's NK (random) Boolean networks under arbitrary distributions of transfer functions. Given such a Boolean network where each transfer function is drawn from the same distribution, we present a formula that determines whether short-term chaos (damage spreading) will happen. Our main technical tool which enables the formal proof of this formula is the Fourier analysis of Boolean functions, which describes such functions as multilinear polynomials over the inputs. Numerical simulations on mixtures of threshold functions and nested canalyzing functions demonstrate the formula's correctness.
科研通智能强力驱动
Strongly Powered by AbleSci AI