启发式
平滑的
进化算法
计算机科学
数学优化
指数平滑
算法
启发式
计算复杂性理论
数学
统计
作者
Josef Tvrdík,Ivan Křívý,Ladislav Mišík
标识
DOI:10.1007/978-3-642-57489-4_51
摘要
The paper presents a new class of evolutionary algorithms based on the competition of different heuristics. The algorithm was applied to solving some optimization problems of computational statistics, namely to estimating the parameters of non-linear regression models, constrained M-estimates and optimizing the smoothing constants in the Winters exponential smoothing. The results showed that the evolutionary algorithm with competing heuristics can be successfully used in solving some global optimization problems of computational statistics.
科研通智能强力驱动
Strongly Powered by AbleSci AI