The effect of sex, age and race on estimating percentage body fat from body mass index: The Heritage Family Study

体质指数 人口学 医学 体脂百分比 方差分析 线性回归 静水压称重 回归分析 肥胖 种族(生物学) 内科学 体重 统计 数学 生物 社会学 植物
作者
AS Jackson,Stanforth Pr,Jacques Gagnon,Tuomo Rankinen,Arturo S. León,D. C. Rao,JS Skinner,Claude Bouchard,Wilmore Jh
出处
期刊:International Journal of Obesity [Springer Nature]
卷期号:26 (6): 789-796 被引量:654
标识
DOI:10.1038/sj.ijo.0802006
摘要

To study the effects of sex, age and race on the relation between body mass index (BMI) and measured percent body fat (%fat).Cross-sectional validation study of sedentary individuals.The Heritage Family Study cohort of 665 black and white men and women who ranged in age from 17 to 65 y.Body density determined from hydrostatic weighing. Percentage body fat determined with gender and race-specific, two-compartment models. BMI determined from height and weight, and sex and race in dummy coded form.Polynomial regression showed that the relationship between %fat and BMI was quadratic for both men and women. A natural log transformation of BMI adjusted for the non-linearity. Test for homogeneity of log transformed BMI and gender showed that the male-female slopes were within random variance, but the intercepts differed. For the same BMI, the %fat of females was 10.4% higher than that of males. General linear models analysis of the women's data showed that age, race and race-by-BMI interaction were independently related to %fat. The same analysis applied to the men's data showed that %fat was not just a function of BMI, but also age and age-by-BMI interaction. Multiple regression analyses provided models that defined the bias.These data and results published in the literature show that BMI and %fat relationship are not independent of age and gender. These data showed a race effect for women, but not men. The failure to adjust for these sources of bias resulted in substantial differences in the proportion of subjects defined as obese by measured %fat.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的小迷弟应助111采纳,获得10
1秒前
Accept应助wintercyan采纳,获得20
1秒前
哲999完成签到,获得积分10
1秒前
Mian完成签到,获得积分10
1秒前
2秒前
2秒前
于嗣濠完成签到 ,获得积分10
2秒前
36456657应助CC采纳,获得10
2秒前
优雅山柏发布了新的文献求助10
3秒前
Jacky完成签到,获得积分10
3秒前
脑洞疼应助无情的白桃采纳,获得10
3秒前
mm发布了新的文献求助10
3秒前
4秒前
4秒前
zoko发布了新的文献求助10
4秒前
4秒前
曾经的臻发布了新的文献求助10
4秒前
华仔应助S1mple_gentleman采纳,获得10
4秒前
科研通AI5应助CC采纳,获得10
4秒前
4秒前
5秒前
5秒前
张静静完成签到,获得积分10
6秒前
6秒前
震666发布了新的文献求助30
6秒前
MADKAI发布了新的文献求助10
6秒前
6秒前
117发布了新的文献求助10
6秒前
7秒前
7秒前
酶没美镁完成签到,获得积分10
7秒前
小二郎应助Rui采纳,获得10
7秒前
Libra完成签到,获得积分10
8秒前
雪儿发布了新的文献求助30
8秒前
无悔呀发布了新的文献求助10
8秒前
小巧的可仁完成签到 ,获得积分10
8秒前
8秒前
zhao完成签到,获得积分10
9秒前
masu发布了新的文献求助10
9秒前
冷酷尔琴发布了新的文献求助10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740